Simple exploration of 6H-Benzo[c]chromen-6-one

Application In Synthesis of 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Nakamura, M; Togo, H or concate me.

Application In Synthesis of 6H-Benzo[c]chromen-6-one. Recently I am researching about O BOND FORMATION; CARBOXYLIC-ACIDS; BENZOCOUMARINS; LACTONIZATION; CYCLIZATION; ACCESS; NIS, Saw an article supported by the JSPS KAKENHIMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceGrants-in-Aid for Scientific Research (KAKENHI) [JP18K05118]. Published in PERGAMON-ELSEVIER SCIENCE LTD in OXFORD ,Authors: Nakamura, M; Togo, H. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one

Treatment of 2-arylbenzoic acids with N-chlorosuccinimide (NCS) and NaI at 70 degrees C under fluorescent lighting condition gave the corresponding 3,4-benzocoumarins in good yields under transition-metal-free condition. It was found that the reactivity of NCS with NaI for the formation of 3,4-benzocoumarins from 2-arylbenzoic acids was as high as that with NIS. Thus, the formation of carboxyl radicals and their cyclization onto an aromatic ring from 2-arylbenzoic acids with much less expensive NCS and NaI, than NIS could be successfully carried out to form 3,4-benzocoumarins.

Application In Synthesis of 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Nakamura, M; Togo, H or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

A new application aboutC10H10O2

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Chen, Z; Cao, YF; Zhang, YL; Qiao, YJ or concate me.. SDS of cas: 103-26-4

Recently I am researching about FATTY LIVER-DISEASE; HEPATIC CYTOCHROME-P450 1A1; MESSENGER-RNA EXPRESSION; POTENTIAL ANKYRIN 1; ANDROGEN RECEPTOR; DANHONG INJECTION; OXIDATIVE STRESS; GENE-EXPRESSION; CYP 1A1; PLATELET-AGGREGATION, Saw an article supported by the National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China (NSFC) [81430094]. Published in MDPI in BASEL ,Authors: Chen, Z; Cao, YF; Zhang, YL; Qiao, YJ. The CAS is 103-26-4. Through research, I have a further understanding and discovery of Methyl 3-phenyl-2-propenoate. SDS of cas: 103-26-4

Pungent traditional Chinese medicines (TCMs) play a vital role in the clinical treatment of hepatobiliary disease, gastrointestinal diseases, cardiovascular diseases, diabetes, skin diseases and so on. Pungent TCMs have a vastness of pungent flavored (with pungent taste or smell) compounds. To elucidate the molecular mechanism of pungent flavored compounds in treating cardiovascular diseases (CVDs) and liver diseases, five pungent TCMs with the action of blood-activating and stasis-resolving (BASR) were selected. Here, an integrated systems pharmacology approach is presented for illustrating the molecular correlations between pungent flavored compounds and their holistic efficacy at the special organ level. First, we identified target proteins that are associated with pungent flavored compounds and found that these targets were functionally related to CVDs and liver diseases. Then, based on the phenotype that directly links human genes to the body parts they affect, we clustered target modules associated with pungent flavored compounds into liver and heart organs. We applied systems-based analysis to introduce a pungent flavored compound-target-pathway-organ network that clarifies mechanisms of pungent substances treating cardiovascular diseases and liver diseases by acting on the heart/liver organ. The systems pharmacology also suggests a novel systematic strategy for rational drug development from pungent TCMs in treating cardiovascular disease and associated liver diseases.

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Chen, Z; Cao, YF; Zhang, YL; Qiao, YJ or concate me.. SDS of cas: 103-26-4

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Can You Really Do Chemisty Experiments About C10H10O2

Name: Methyl 3-phenyl-2-propenoate. About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Schmid, L; Kerzig, C; Prescimone, A; Wenger, OS or concate me.

Name: Methyl 3-phenyl-2-propenoate. In 2021 JACS AU published article about SUBSTITUTED BIPYRIDYL COMPLEXES; CHARGE-TRANSFER STATES; ALPHA-AMINO-ACIDS; VISIBLE-LIGHT; POLYPYRIDINE COMPLEXES; IRIDIUM(III) COMPLEXES; ELECTRON-TRANSFER; DECARBOXYLATIVE ARYLATION; PHOTOINDUCED ELECTRON; REDUCTIVE-ELIMINATION in [Schmid, Lucius; Prescimone, Alessandro; Wenger, Oliver S.] Univ Basel, Dept Chem, CH-4056 Basel, Switzerland; [Kerzig, Christoph] Johannes Gutenberg Univ Mainz, Dept Chem, D-55128 Mainz, Germany in 2021, Cited 154. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4.

Ruthenium(II) polypyridine complexes are among the most popular sensitizers in photocatalysis, but they face some severe limitations concerning accessible excited-state energies and photostability that could hamper future applications. In this study, the borylation of heteroleptic ruthenium(II) cyanide complexes with alpha-diimine ancillary ligands is identified as a useful concept to elevate the energies of photoactive metal-to-ligand charge-transfer (MLCT) states and to obtain unusually photorobust compounds suitable for thermodynamically challenging energy transfer catalysis as well as oxidative and reductive photoredox catalysis. B(C6F5)(3) groups attached to the CN- ligands stabilize the metal-based t(2g)-like orbitals by similar to 0.8 eV, leading to high (MLCT)-M-3 energies (up to 2.50 eV) that are more typical for cyclometalated iridium(III) complexes. Through variation of their alpha-diimine ligands, nonradiative excited-state relaxation pathways involving higher-lying metal-centered states can be controlled, and their luminescence quantum yields and MLCT lifetimes can be optimized. These combined properties make the respective isocyanoborato complexes amenable to photochemical reactions for which common ruthenium(II)-based sensitizers are unsuited, due to a lack of sufficient triplet energy or excited-state redox power. Specifically, this includes photoisomerization reactions, sensitization of nickel-catalyzed cross-couplings, pinacol couplings, and oxidative decarboxylative C-C couplings. Our work is relevant in the greater context of tailoring photoactive coordination compounds to current challenges in synthetic photochemistry and solar energy conversion.

Name: Methyl 3-phenyl-2-propenoate. About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Schmid, L; Kerzig, C; Prescimone, A; Wenger, OS or concate me.

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Discover the magic of the Methyl 3-phenyl-2-propenoate

SDS of cas: 103-26-4. About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Niziol, J; Misiorek, M; Ruman, T or concate me.

In 2019.0 PHYTOCHEMISTRY published article about AROMA COMPOUNDS; 2,5-DIMETHYL-4-HYDROXY-3(2H)-FURANONE FURANEOL; FLAVOR QUALITY; PHENOLIC-ACIDS; VITAMIN-C; CULTIVARS; PROANTHOCYANIDINS; IDENTIFICATION; BIOSYNTHESIS; ACCUMULATION in [Niziol, Joanna; Misiorek, Maria; Ruman, Tomasz] Rzeszow Univ Technol, Fac Chem, 6 Powstancow Warszawy Ave, PL-35959 Rzeszow, Poland in 2019.0, Cited 98.0. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4. SDS of cas: 103-26-4

Strawberry (Fragaria x ananassa Duch., Rosaceae) is the subject of many research studies due to its numerous features such as unique taste, aroma and health qualities. The distribution of low molecular weight metabolites belonging to aldehydes, ketones, alcohols, esters, organic acids, phenolics, amino acids and sugars classes within strawberry fruit cross-section was studied using mass spectrometry imaging (MSI) method with Ag-109 nano-particle enhanced target ((AgNPET)-Ag-109). Correlation of distribution of over thirty compounds found in cross-section of strawberry with their biological function is also included.

SDS of cas: 103-26-4. About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Niziol, J; Misiorek, M; Ruman, T or concate me.

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Extended knowledge of C13H8O2

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Bhunia, SK; Das, P; Nandi, S; Jana, R or concate me.. Computed Properties of C13H8O2

An article Carboxylation of Aryl Triflates with CO2 Merging Palladium and Visible-Light-Photoredox Catalysts WOS:000473116000050 published article about C-H FUNCTIONALIZATION; CARBON-DIOXIDE; DUAL CATALYSIS; DRIVEN CARBOXYLATION; UNACTIVATED PRIMARY; BUILDING-BLOCK; BONDS; HALIDES; ACIDS; HYDROCARBOXYLATION in [Bhunia, Samir Kumar; Das, Pritha; Nandi, Shantanu; Jana, Ranjan] CSIR Indian Inst Chem Biol, Organ & Med Chem Div, 4 Raja SC Mullick Rd, Kolkata 700032, W Bengal, India; [Bhunia, Samir Kumar; Jana, Ranjan] Acad Sci & Innovat Res AcSIR, Kolkata 700032, W Bengal, India in 2019.0, Cited 88.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9. Computed Properties of C13H8O2

We report herein a visible-light-promoted, highly practical carboxylation of readily accessible aryl triflates at ambient temperature and a balloon pressure of CO2 by the combined use of palladium and photoredox Ir(III) catalysts. Strikingly, the stoichiometric metallic reductant is replaced by a nonmetallic amine reductant providing an environmentally benign carboxylation process. In addition, one-pot synthesis of a carboxylic acid directly from phenol and modification of estrone and concise synthesis of pharmaceutical drugs adapalene and bexarotene have been accomplished via late-stage carboxylation reaction. Furthermore, a parallel decarboxylation-carboxylation reaction has been demonstrated in an H-type closed vessel that is an interesting concept for the strategic sector. Spectroscopic and spectroelectrochemical studies indicated electron transfer from the Ir(III)/DIPEA combination to generate aryl carboxylate and Pd(0) for catalytic turnover.

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Bhunia, SK; Das, P; Nandi, S; Jana, R or concate me.. Computed Properties of C13H8O2

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Properties and Exciting Facts About 6H-Benzo[c]chromen-6-one

Quality Control of 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Boelke, A; Sadat, S; Lork, E; Nachtsheim, BJ or concate me.

Boelke, A; Sadat, S; Lork, E; Nachtsheim, BJ in [Boelke, Andreas; Sadat, Soleicha; Nachtsheim, Boris J.] Univ Bremen, Inst Organ & Analyt Chem, D-28359 Bremen, Germany; [Lork, Enno] Univ Bremen, Inst Inorgan Chem & Crystallog, D-28359 Bremen, Germany published Pseudocyclic bis-N-heterocycle-stabilized iodanes – synthesis, characterization and applications in 2021.0, Cited 47.0. Quality Control of 6H-Benzo[c]chromen-6-one. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

Bis-N-heterocycle-stabilized lambda(3)-iodanes (BNHIs) based on azoles are introduced as novel structural motifs in hypervalent iodine chemistry. A performance test in a variety of benchmark reactions including sulfoxidations and phenol dearomatizations revealed a bis-N-bound pyrazole substituted BNHI as the most reactive derivative. Its solid-state structure was characterized via X-ray analysis implying strong intramolecular interactions between the pyrazole nitrogen atoms and the hypervalent iodine centre.

Quality Control of 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Boelke, A; Sadat, S; Lork, E; Nachtsheim, BJ or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Final Thoughts on Chemistry for Methyl 3-phenyl-2-propenoate

SDS of cas: 103-26-4. About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Vucetic, N; Virtanen, P; Nuri, A; Mattsson, I; Aho, A; Mikkola, JP; Salmi, T or concate me.

In 2019.0 J CATAL published article about COUPLING REACTIONS; EFFICIENT; PHASE; HYDROGENATION; COMPLEXES; MEDIA; SALTS; WATER; BASE; ARYL in [Vucetic, Nemanja; Virtanen, Pasi; Nuri, Ayat; Aho, Atte; Mikkola, Jyri-Pekka; Salmi, Tapio] Abo Akad Univ, Johan Gadolin Proc Chem Ctr, Lab Ind Chem & React Engn, Biskopsgatan 8, FI-20500 Turku, Finland; [Nuri, Ayat] Univ Mohaghegh Ardabili, Fac Sci, Dept Appl Chem, Ardebil 5619911367, Iran; [Mattsson, Ida] Abo Akad Univ, Johan Gadolin Proc Chem Ctr, Organ Chem Lab, Biskopsgatan 8, FI-20500 Turku, Finland; [Mikkola, Jyri-Pekka] Umea Univ, Chem Biol Ctr, Dept Chem, Tech Chem, SE-90187 Umea, Sweden in 2019.0, Cited 58.0. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4. SDS of cas: 103-26-4

A new bis-layered supported ionic liquid catalyst (SILCA) loaded with palladium was designed and successfully applied for the Heck reaction of iodobenzene and methyl acrylate. The silica modified catalyst consisting of the first ionic liquid layer – covalently anchored imidazolium bromide – on which the second layer, made of pyridine-carboxylic acid balanced with tetramethylguanidinium cation was attached, resulted in a catalyst with high activity. High turnover frequencies of 22,000 h(-1) were achieved in reactions with a low palladium loading as 0.009 mol %. Lower TOFs, indicating on palladium dimerization was detected when higher amounts were used. The TMG cation had a purpose to recapture and stabilize the Pd nanoparticles thus followed a release and catch mechanism. In order to get a full understanding of the catalyst structure and behaviour, the catalyst was characterized by means of nitrogen physisorption, thermal gravimetric analysis, infrared spectroscopy, scanning electron and transmission electron microscopes, solid-state NMR, X-ray photoelectron spectroscopy and inductively coupled plasma spectroscopy. The catalyst preserved good activity in five cycles. (C) 2019 Elsevier Inc. All rights reserved.

SDS of cas: 103-26-4. About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Vucetic, N; Virtanen, P; Nuri, A; Mattsson, I; Aho, A; Mikkola, JP; Salmi, T or concate me.

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Now Is The Time For You To Know The Truth About Methyl 3-phenyl-2-propenoate

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Li, PH; Wang, YY; Wang, YW; Jin, GQ; Guo, XY; Tong, XL or concate me.. Recommanded Product: 103-26-4

An article Silicon Carbide Supported Palladium-Iridium Bimetallic Catalysts for Efficient Selective Hydrogenation of Cinnamaldehyde WOS:000513909800001 published article about PHOTOCATALYTIC SONOGASHIRA REACTION; ALPHA,BETA-UNSATURATED ALDEHYDES; NANOPARTICLES; CARBON; IR; NANOTUBES; PROMOTION; BOND in [Li, Penghui; Wang, Yingyong; Wang, Yunwei; Jin, Guoqiang; Guo, Xiang-Yun; Tong, Xili] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Shanxi, Peoples R China; [Li, Penghui] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China; [Guo, Xiang-Yun] Changzhou Univ, Sch Petrochem Engn, Changzhou 213164, Jiangsu, Peoples R China in 2020.0, Cited 37.0. Recommanded Product: 103-26-4. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4

The Summary of main observation and conclusion Selective hydrogenation of alpha,beta-unsaturated carbonyls into saturated carbonyls is important to obtain remunerative products. However, it is still a challenge to achieve high activity and selectivity under mild conditions. Herein, Pd, Ir and bimetallic Pd-Ir nanoparticles were uniformly deposited with high dispersity on the surface of SiC by a facile impregnation method, respectively. The as-prepared Pd/SiC catalysts efficiently hydrogenate cinnamaldehyde to hydrocinnamaldehyde at room temperature and atmospheric pressure, and the activity of Pd/SiC is observed further enhanced by adding Ir component (conversion of 100%). In addition, the dependence of Pd-Ir catalyst activity on Pd/Ir molar ratio confirms a synergistic effect between Ir and Pd, which originates from the electron transfer between Pd and Ir.

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Li, PH; Wang, YY; Wang, YW; Jin, GQ; Guo, XY; Tong, XL or concate me.. Recommanded Product: 103-26-4

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

The Best Chemistry compound:Methyl 3-phenyl-2-propenoate

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Arghan, M; Koukabi, N; Kolvari, E or concate me.. Recommanded Product: 103-26-4

An article Magnetic apple seed starch functionalized with 2,2 ‘-furil as a green host for cobalt nanoparticles: Highly active and reusable catalyst for Mizoroki-Heck and the Suzuki-Miyaura reactions WOS:000473932000001 published article about SUPPORTED PALLADIUM CATALYST; CROSS-COUPLING REACTION; TURNOVER FREQUENCY; PD(II) CATALYST; ACID CATALYST; SULFONIC-ACID; EFFICIENT; CHITOSAN; CO; PERFORMANCE in [Arghan, Maryam; Koukabi, Nadiya; Kolvari, Eskandar] Semnan Univ, Dept Chem, POB 35195-363, Semnan 54058, Iran in 2019.0, Cited 51.0. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4. Recommanded Product: 103-26-4

From the perspective of green chemistry, in catalytic systems, being low cost and eco-friendly, in addition to high chemical and thermal stability, are requirements of support materials. In this regard, we used apple seed starch as an accessible, nontoxic, and cost-effective support material. In order to take advantage of magnetic separation, the magnetite nanoparticles were chosen as an ideal pair for apple seed starch. Furthermore, during the Schiff base reaction, the magnetic apple seed starch was functionalized with 2,2 ‘-furil along with amine functionality to be used as a bio-support for immobilization of cobalt. The introduction of cobalt had a significant effect on the greenness of the catalyst and reducing its price. FT-IR, TGA, XRD, FE-SEM, TEM, VSM, ninhydrin test, element mapping, AAS, and EDX analysis were applied to characterize the newly prepared catalyst. The effectiveness of this novel Schiff base supported catalyst was evaluated in the Mizoroki-Heck and the Suzuki-Miyaura coupling reactions. High reactivity and selectivity were among the most prominent characteristics of the catalyst as compared to previously reported catalysts. The longevity test and hot filtration showed the ability to use the catalyst at least 5 times and negligible cobalt leaching during the reaction, respectively. This work is the first report on the usage of apple seed starch as a supporting catalyst and 2,2 ‘-furil as a ligand in the catalyst modifications and catalytic activity. Accordingly, this can be the beginning of an attractive way in the design and synthesis of heterogeneous catalysts.

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Arghan, M; Koukabi, N; Kolvari, E or concate me.. Recommanded Product: 103-26-4

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

An update on the compound challenge: 2005-10-9

Category: esters-buliding-blocks. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Hanashima, M; Matsumura, T; Asaji, Y; Yoshimura, T; Matsuo, J or concate me.

Hanashima, M; Matsumura, T; Asaji, Y; Yoshimura, T; Matsuo, J in [Hanashima, Mika; Matsumura, Toshiki; Asaji, Yuta; Yoshimura, Tomoyuki; Matsuo, Jun-ichi] Kanazawa Univ, Grad Sch Med Sci, Div Pharmaceut Sci, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan published Bridged-Selective Intramolecular Diels-Alder Reactions in the Synthesis of Bicyclo[2.2.2]octanes in 2020.0, Cited 40.0. Category: esters-buliding-blocks. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

Regioselectivity for intramolecular Diels-Alder (IMDA) reactions of 6-acetoxy-6-alkenylcyclohexa-2,4-dien-1-ones that were formed by oxidation of 2-alkenylphenols with lead tetraacetate in acetic acid were studied. Bridged regioselectivity was observed in the IMDA reactions of 6-acetoxy-6-alkenylcyclohexa-2,4-dien-1-ones having a dienophile part which could conjugate with an aromatic group. Bridged seven-and eight-membered rings and bicyclo[2.2.2]octane skeletons were constructed by the present IMDA reactions. Density functional theory (DFT) calculations suggested that conjugation of the dienophile with neighboring aromatic groups lowered the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap and preceded bridged [4 + 2] adducts.

Category: esters-buliding-blocks. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Hanashima, M; Matsumura, T; Asaji, Y; Yoshimura, T; Matsuo, J or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics