The important role of 103-25-3

Computed Properties of C10H12O2. About Methyl 3-phenylpropionate, If you have any questions, you can contact Iosub, AV; Moravcik, S; Wallentin, CJ; Bergman, J or concate me.

Computed Properties of C10H12O2. Iosub, AV; Moravcik, S; Wallentin, CJ; Bergman, J in [Iosub, Andrei, V; Moravcik, Stefan; Bergman, Joakim] AstraZeneca, BioPharmaceut R&D, Med Chem Res & Early Dev Cardiovasc, Renal & Metab, Gothenburg, Sweden; [Wallentin, Carl-Johan] Gothenburg Univ, Dept Chem & Mol Biol, Gothenburg, Sweden published Nickel-Catalyzed Selective Reduction of Carboxylic Acids to Aldehydes in 2019.0, Cited 66.0. The Name is Methyl 3-phenylpropionate. Through research, I have a further understanding and discovery of 103-25-3.

The direct reduction of carboxylic acids to aldehydes is a fundamental transformation in organic synthesis. The combination of an air-stable Ni precatalyst, dimethyl dicarbonate as an activator, and silane reductant effects this reduction for a wide variety of substrates, including pharmaceutically relevant structures, in good yields and with no overreduction to alcohols. Moreover, this methodology is scalable, allows access to deuterated aldehydes, and is also compatible with one-pot utilization of the aldehyde products.

Computed Properties of C10H12O2. About Methyl 3-phenylpropionate, If you have any questions, you can contact Iosub, AV; Moravcik, S; Wallentin, CJ; Bergman, J or concate me.

Reference:
Patent; SANOFI; US2011/294788; (2011); A1;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Let`s talk about compound :C13H8O2

Application In Synthesis of 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Nakamura, M; Togo, H or concate me.

Authors Nakamura, M; Togo, H in PERGAMON-ELSEVIER SCIENCE LTD published article about O BOND FORMATION; CARBOXYLIC-ACIDS; BENZOCOUMARINS; LACTONIZATION; CYCLIZATION; ACCESS; NIS in [Nakamura, Momoko; Togo, Hideo] Chiba Univ, Grad Sch Sci, Inage Ku, Yayoi Cho 1-33, Chiba 2638522, Japan in 2020.0, Cited 31.0. Application In Synthesis of 6H-Benzo[c]chromen-6-one. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9

Treatment of 2-arylbenzoic acids with N-chlorosuccinimide (NCS) and NaI at 70 degrees C under fluorescent lighting condition gave the corresponding 3,4-benzocoumarins in good yields under transition-metal-free condition. It was found that the reactivity of NCS with NaI for the formation of 3,4-benzocoumarins from 2-arylbenzoic acids was as high as that with NIS. Thus, the formation of carboxyl radicals and their cyclization onto an aromatic ring from 2-arylbenzoic acids with much less expensive NCS and NaI, than NIS could be successfully carried out to form 3,4-benzocoumarins.

Application In Synthesis of 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Nakamura, M; Togo, H or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Interesting scientific research on 6H-Benzo[c]chromen-6-one

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Rumyantsev, AV; Pichugov, AV; Bushkov, NS; Aleshin, DY; Strelkova, TV; Lependina, OL; Zhizhko, PA; Zarubin, DN or concate me.. Quality Control of 6H-Benzo[c]chromen-6-one

Quality Control of 6H-Benzo[c]chromen-6-one. Authors Rumyantsev, AV; Pichugov, AV; Bushkov, NS; Aleshin, DY; Strelkova, TV; Lependina, OL; Zhizhko, PA; Zarubin, DN in ROYAL SOC CHEMISTRY published article about in [Rumyantsev, Andrey, V; Pichugov, Andrey, V; Bushkov, Nikolai S.; Aleshin, Dmitry Yu; Strelkova, Tatyana, V; Lependina, Olga L.; Zhizhko, Pavel A.; Zarubin, Dmitry N.] Russian Acad Sci, AN Nesmeyanov Inst Organoelement Cpds, Vavilov Str 28, Moscow 119991, Russia; [Rumyantsev, Andrey, V; Bushkov, Nikolai S.] Moscow MV Lomonosov State Univ, Dept Chem, Vorobevy Gory 1, Moscow 119991, Russia; [Pichugov, Andrey, V; Aleshin, Dmitry Yu] D Mendeleev Univ Chem Technol Russia, Higher Chem Coll, Miusskaya Sq 9, Moscow 125047, Russia in 2021.0, Cited 33.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9

We report the first examples of direct imidation of lactones giving the corresponding cyclic imidates via oxo/imido heterometathesis with N-sulfinylamines catalysed by a well-defined silica-supported Ti imido complex.

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Rumyantsev, AV; Pichugov, AV; Bushkov, NS; Aleshin, DY; Strelkova, TV; Lependina, OL; Zhizhko, PA; Zarubin, DN or concate me.. Quality Control of 6H-Benzo[c]chromen-6-one

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Extended knowledge of Methyl 3-phenyl-2-propenoate

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Hajipour, AR; Khorsandi, Z or concate me.. Safety of Methyl 3-phenyl-2-propenoate

Safety of Methyl 3-phenyl-2-propenoate. Recently I am researching about CONJUGATED MICROPOROUS POLYMERS; GREEN SYNTHESIS; CATALYTIC-ACTIVITY; PD NANOPARTICLES; PALLADIUM NANOPARTICLES; HETEROGENEOUS CATALYSTS; HYDROGEN STORAGE; FACILE SYNTHESIS; LEAF EXTRACT; FRAMEWORK, Saw an article supported by the . Published in WILEY in HOBOKEN ,Authors: Hajipour, AR; Khorsandi, Z. The CAS is 103-26-4. Through research, I have a further understanding and discovery of Methyl 3-phenyl-2-propenoate

A new heterogeneous cobalt catalyst has been synthesized by immobilizing Co species onto a nitrogen-rich porous organic polymer (Co@imine-POP). The heterogeneous catalyst synthesized was efficient in Heck and Sonogashira cross-coupling reactions in green media under mild reaction conditions without inert air and phase transfer agents. This phosphine-, copper-, and palladium-free catalyst was stable under the reaction conditions and could be reused for at least eight successive runs without a discernible decrease in its catalytic activity.

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Hajipour, AR; Khorsandi, Z or concate me.. Safety of Methyl 3-phenyl-2-propenoate

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Chemistry Milestones Of 6H-Benzo[c]chromen-6-one

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Rumyantsev, AV; Pichugov, AV; Bushkov, NS; Aleshin, DY; Strelkova, TV; Lependina, OL; Zhizhko, PA; Zarubin, DN or concate me.. Safety of 6H-Benzo[c]chromen-6-one

Safety of 6H-Benzo[c]chromen-6-one. Authors Rumyantsev, AV; Pichugov, AV; Bushkov, NS; Aleshin, DY; Strelkova, TV; Lependina, OL; Zhizhko, PA; Zarubin, DN in ROYAL SOC CHEMISTRY published article about in [Rumyantsev, Andrey, V; Pichugov, Andrey, V; Bushkov, Nikolai S.; Aleshin, Dmitry Yu; Strelkova, Tatyana, V; Lependina, Olga L.; Zhizhko, Pavel A.; Zarubin, Dmitry N.] Russian Acad Sci, AN Nesmeyanov Inst Organoelement Cpds, Vavilov Str 28, Moscow 119991, Russia; [Rumyantsev, Andrey, V; Bushkov, Nikolai S.] Moscow MV Lomonosov State Univ, Dept Chem, Vorobevy Gory 1, Moscow 119991, Russia; [Pichugov, Andrey, V; Aleshin, Dmitry Yu] D Mendeleev Univ Chem Technol Russia, Higher Chem Coll, Miusskaya Sq 9, Moscow 125047, Russia in 2021.0, Cited 33.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9

We report the first examples of direct imidation of lactones giving the corresponding cyclic imidates via oxo/imido heterometathesis with N-sulfinylamines catalysed by a well-defined silica-supported Ti imido complex.

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Rumyantsev, AV; Pichugov, AV; Bushkov, NS; Aleshin, DY; Strelkova, TV; Lependina, OL; Zhizhko, PA; Zarubin, DN or concate me.. Safety of 6H-Benzo[c]chromen-6-one

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

What kind of challenge would you like to see in a future of compound:6H-Benzo[c]chromen-6-one

Category: esters-buliding-blocks. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Bhunia, SK; Das, P; Nandi, S; Jana, R or concate me.

Recently I am researching about C-H FUNCTIONALIZATION; CARBON-DIOXIDE; DUAL CATALYSIS; DRIVEN CARBOXYLATION; UNACTIVATED PRIMARY; BUILDING-BLOCK; BONDS; HALIDES; ACIDS; HYDROCARBOXYLATION, Saw an article supported by the DST, SERB, Government of India via the Ramanujan fellowship [SR/S2/RJN-97/2012]; UGCUniversity Grants Commission, India; CSIRCouncil of Scientific & Industrial Research (CSIR) – India; DSTDepartment of Science & Technology (India); DST, SERB, Government of India, via the Extramural Research Grant [EMR/2014/000469]. Published in AMER CHEMICAL SOC in WASHINGTON ,Authors: Bhunia, SK; Das, P; Nandi, S; Jana, R. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one. Category: esters-buliding-blocks

We report herein a visible-light-promoted, highly practical carboxylation of readily accessible aryl triflates at ambient temperature and a balloon pressure of CO2 by the combined use of palladium and photoredox Ir(III) catalysts. Strikingly, the stoichiometric metallic reductant is replaced by a nonmetallic amine reductant providing an environmentally benign carboxylation process. In addition, one-pot synthesis of a carboxylic acid directly from phenol and modification of estrone and concise synthesis of pharmaceutical drugs adapalene and bexarotene have been accomplished via late-stage carboxylation reaction. Furthermore, a parallel decarboxylation-carboxylation reaction has been demonstrated in an H-type closed vessel that is an interesting concept for the strategic sector. Spectroscopic and spectroelectrochemical studies indicated electron transfer from the Ir(III)/DIPEA combination to generate aryl carboxylate and Pd(0) for catalytic turnover.

Category: esters-buliding-blocks. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Bhunia, SK; Das, P; Nandi, S; Jana, R or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

When did you first realize you had a special interest and talent inC10H10O2

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Luo, XN; Yuan, M; Li, BJ; Li, CY; Zhang, YL; Shi, QQ or concate me.. Quality Control of Methyl 3-phenyl-2-propenoate

Luo, XN; Yuan, M; Li, BJ; Li, CY; Zhang, YL; Shi, QQ in [Luo, Xiaoning; Yuan, Meng; Li, Bingjie; Li, Chenyao; Zhang, Yanlong; Shi, Qianqian] Northwest A&F Univ, Coll Landscape Architecture & Art, Yangling, Shaanxi, Peoples R China published Variation of floral volatiles and fragrance reveals the phylogenetic relationship among nine wild tree peony species in 2020.0, Cited 64.0. Quality Control of Methyl 3-phenyl-2-propenoate. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4.

In recent years, more and more attention has been paid to the natural floral volatiles in tree peony and the fragrance components have been widely used in the fields of health care, perfumes, and cosmetics. However, there is little research on the identification of fragrance components of wild tree peony species. In present study, volatile components in petals of nine wild tree peony species were analyzed using a headspace solid-phase microextraction (SPME) technique coupled with gas chromatography-mass spectrometry (GC-MS). A total of 124 volatile components were identified and clustered into five major chemical classes: terpenoids, alkanes, alcohols, aldehydes, and ketones. Overall, combined with the sensory evaluation of nine wild tree peony species, Paeonia. ostii (P2) performed herbal and waxy attributes, mainly dominated by hexanal and pentadecane, respectively. P rockii (P1), P qiui (P3), P jishanensis (P4), and P decomposita (P5) all possessed sweet attribute, which was positively correlated with geraniol and citronellol. P delavayi (P9), P lutea (P7), P ludlowii (P8), and P potanini (P6) performed intense floral attribute dominated by linalool and trans-linalool oxide. Moreover, the results of principal component analysis (PCA) and hierarchical clustering analysis (HCA) showed P decomposita (P5), P qiui (P3), P rockii (P1), P jishanensis (P4), and P ostii (P2) in the Subsect. Vagiatae were mixed to form one cluster while P lutea (P7), P delavayi (P9), P ludlowii (P8), and P potanini (P6) in the Subsect. Delavayanae formed the other cluster. In terms of geographical distribution, the two clusters are consistent with the distribution of wild tree peony species. The present study clarified the relationship between fragrance and components and further revealed the phylogenetic relationship of nine wild tree peony species, thus providing a theoretical basis for their development and utilization.

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Luo, XN; Yuan, M; Li, BJ; Li, CY; Zhang, YL; Shi, QQ or concate me.. Quality Control of Methyl 3-phenyl-2-propenoate

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

What about chemistry interests you the most 103-26-4

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Wei, Q; Xia, Q; Wang, Y; Chen, W; Liu, CL; Zeng, RZ; Xie, L; Yi, MS; Guo, HR or concate me.. Name: Methyl 3-phenyl-2-propenoate

Name: Methyl 3-phenyl-2-propenoate. I found the field of Biochemistry & Molecular Biology; Chemistry very interesting. Saw the article Profiling of Volatile Compounds and Associated Gene Expression in Two Anthurium Cultivars and Their F1 Hybrid Progenies published in 2021.0, Reprint Addresses Guo, HR (corresponding author), South China Agr Univ, Coll Forestry & Landscape Architecture, Guangdong Key Lab Innovat Dev & Utilizat Forest P, Guangzhou 510642, Peoples R China.; Yi, MS (corresponding author), Guangzhou Flower Res Ctr, Guangzhou 510360, Peoples R China.. The CAS is 103-26-4. Through research, I have a further understanding and discovery of Methyl 3-phenyl-2-propenoate.

Anthurium is an important ornamental crop in the world market and its floral scent can enhance its ornamental value. To date, studies of the components and formation mechanism of the floral scent of Anthurium are relatively few. In this study, the scent profiles of two Anthurium varieties were measured by gas chromatograph-mass spectrometer (GC-MS). There were 32 volatile organic compounds (VOCs) identified in Anthurium ‘Mystral’, and the most abundant compound was eucalyptol (57.5%). Extremely small amounts of VOCs were detected in Anthurium ‘Alabama’. Compared with A. ‘Alabama’, most genes related to floral scent synthesis exhibited a higher expression in A. ‘Mystral’, including AaDXS, AaDXR, AaMDS, AaHDS, AaTPS, AaDAHPS, AaADT2, AaPAL1, and AaPAL2. In order to produce new varieties of Anthurium with fragrance, 454 progenies of two crossbred combinations of A. ‘Mystral’ and A. ‘Alabama’ were obtained. Four F1 generation plants with different floral scent intensities were selected for further study. The major components of floral scent in the progenies were similar to that of the parental A. ‘Mystral’ plant. The expression patterns of genes related to floral scent synthesis were consistent with the relative contents of different types of VOCs. This study revealed the profiles of volatile compounds and associated gene expression in two Anthurium cultivars and their F1 hybrids, which provided a basis for the floral scent inheritance of Anthurium andraeanum.

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Wei, Q; Xia, Q; Wang, Y; Chen, W; Liu, CL; Zeng, RZ; Xie, L; Yi, MS; Guo, HR or concate me.. Name: Methyl 3-phenyl-2-propenoate

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

The important role of 103-26-4

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Huang, ZX; Pang, DR; Liao, ST; Zou, YX; Zhou, PF; Li, EN; Wang, WF or concate me.. Recommanded Product: 103-26-4

Authors Huang, ZX; Pang, DR; Liao, ST; Zou, YX; Zhou, PF; Li, EN; Wang, WF in ELSEVIER published article about in [Huang, Zhaoxiang; Pang, Daorui; Liao, Sentai; Zou, Yuxiao; Zhou, Pengfei; Li, Erna; Wang, Weifei] Guangdong Acad Agr Sci, Sericultural & Agri Food Res Inst, Key Lab Funct Foods, Minist Agr & Rural Affairs,Guangdong Key Lab Agr, Guangzhou 510610, Guangdong, Peoples R China; [Huang, Zhaoxiang] Zhongkai Univ Agr & Engn, Coll Light Ind & Food, Guangzhou 510225, Guangdong, Peoples R China in 2021.0, Cited 50.0. Recommanded Product: 103-26-4. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4

Cinnamon is an important spice crop that is widely cultivated in tropical regions. In this study, the antibacterial activities of four accessions of cinnamon essential oil (CEO) belonging to three different species (CEO1 and CEO4, Cinnamomum cassia Presl. (Lauraceae) bark; CEO2, Cinnamomum zeylanicum Blume (Lauraceae) bark; CEO3, Cinnamomum burmannii Blume (Lauraceae) bark) toward Salmonella enterica subsp. enterica serovar pullorum (S. pullorum) were evaluated by microdilution assay and kinetic analysis. The minimum inhibitory concentration (MIC) of the CEOs were all 0.31 mg/mL, and kinetic analysis suggested that the lag phase and maximum specific growth rate of bacteria were concentration dependent. Furthermore, to explore the synergistic antibacterial effects between main components and minor components, the volatile constituents of CEOs were determined by gas chromatography-mass spectrometry (GC-MS). Cinnamaldehyde (CM) (57.73 %-91.79 %) was the principal constituent in CEO1-CEO4 (p < 0.05), with CEO3 having the highest CM contents. Screening of the active minor compounds isolated from CEOs showed that cinnamic acid (CA), salicylaldehyde, alpha-pinene, o-anisaldehyde with MIC value of 0.31-2.5 mg/mL had better antibacterial activity. A synergistic effect against S. pullorum was observed when CA was combined with CM. To explore the potential synergistic mechanism, the membrane glycerophospholipid (GPL) composition of S. pullorum was characterized by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). CM, CA, and their combination regulated the levels of most phosphatidylethanolamines (PEs), phosphatidylglycerols (PGs), phosphatidic acids (PAs), and some cardiolipins (CLs). About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Huang, ZX; Pang, DR; Liao, ST; Zou, YX; Zhou, PF; Li, EN; Wang, WF or concate me.. Recommanded Product: 103-26-4

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

The Shocking Revelation of 103-25-3

HPLC of Formula: C10H12O2. About Methyl 3-phenylpropionate, If you have any questions, you can contact Martinez, AM; Hayrapetyan, D; van Lingen, T; Dyga, M; Goossen, LJ or concate me.

An article Taking electrodecarboxylative etherification beyond Hofer-Moest using a radical C-O coupling strategy WOS:000607085800015 published article about DECARBOXYLATIVE ALLYLIC ETHERIFICATION; OXIDATIVE DECARBOXYLATION; CARBOXYLIC-ACIDS; ANODIC-OXIDATION; ELECTROCHEMICAL SYNTHESIS; ALIPHATIC-ACIDS; MALONIC-ACID; ARYL; COMPLEXES; ELECTROLYSIS in [Martinez, Angel Manu; Hayrapetyan, Davit; van Lingen, Tim; Dyga, Marco; Goossen, Lukas J.] Ruhr Univ Bochum, Fak Chem & Biochem, Univ Str 150, D-44801 Bochum, Germany in 2020.0, Cited 75.0. HPLC of Formula: C10H12O2. The Name is Methyl 3-phenylpropionate. Through research, I have a further understanding and discovery of 103-25-3

Established electrodecarboxylative etherification protocols are based on Hofer-Moest-type reaction pathways. An oxidative decarboxylation gives rise to radicals, which are further oxidised to carbocations. This is possible only for benzylic or otherwise stabilised substrates. Here, we report the electrodecarboxylative radical-radical coupling of lithium alkylcarboxylates with 1-hydroxybenzotriazole at platinum electrodes in methanol/pyridine to afford alkyl benzotriazole ethers. The substrate scope of this electrochemical radical coupling extends to primary and secondary alkylcarboxylates. The benzotriazole products easily undergo reductive cleavage to the alcohols. They can also serve as synthetic hubs to access a wide variety of functional groups. This reaction prototype demonstrates that electrodecarboxylative C-O bond formation can be taken beyond the intrinsic substrate limitations of Hofer-Moest mechanisms.

HPLC of Formula: C10H12O2. About Methyl 3-phenylpropionate, If you have any questions, you can contact Martinez, AM; Hayrapetyan, D; van Lingen, T; Dyga, M; Goossen, LJ or concate me.

Reference:
Patent; SANOFI; US2011/294788; (2011); A1;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics