Properties and Exciting Facts About Methyl 3-phenyl-2-propenoate

Quality Control of Methyl 3-phenyl-2-propenoate. About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Wang, DM; Feng, W; Wu, YC; Liu, T; Wang, P or concate me.

Wang, DM; Feng, W; Wu, YC; Liu, T; Wang, P in [Wang, Dao-Ming; Feng, Wang; Wu, Yichen; Liu, Tao; Wang, Peng] Chinese Acad Sci, Shanghai Inst Organ Chem, Ctr Excellence Mol Synth, State Key Lab Organomet Chem, 345 Lingling Rd, Shanghai 200032, Peoples R China; [Wang, Peng] Chinese Acad Sci, Shanghai Inst Organ Chem, CAS Key Lab Energy Regulat Mat, 345 Lingling Rd, Shanghai 200032, Peoples R China published Redox-Neutral Nickel(II) Catalysis: Hydroarylation of Unactivated Alkenes with Arylboronic Acids in 2020.0, Cited 66.0. Quality Control of Methyl 3-phenyl-2-propenoate. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4.

Reported here is the discovery of a redox-neutral Ni-II/Ni(II)catalytic cycle which is capable of the linear-selective hydroarylation of unactivated alkenes with arylboronic acids for the first time. This novel catalytic cycle, enabled by the use of an electron-rich diimine ligand, features broad substrate scope, and excellent functional-group and heterocycle compatibility under mild reaction conditions in the absence of additional oxidants and reductants. Mechanistic investigations using kinetic analysis and deuterium-labelling experiments revealed the protonation to be the rate-determining step in this redox-neutral catalysis, and the reversible chain-walking nature of the newly developed diimine-Ni catalyst.

Quality Control of Methyl 3-phenyl-2-propenoate. About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Wang, DM; Feng, W; Wu, YC; Liu, T; Wang, P or concate me.

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Discovery of 2005-10-9

Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.. Category: esters-buliding-blocks

Category: esters-buliding-blocks. I found the field of Chemistry very interesting. Saw the article Visible-Light-Induced Arene C(sp (2) )-H Lactonization Promoted by DDQ and tert -Butyl Nitrite published in 2020.0, Reprint Addresses Li, MC; Shen, ZL (corresponding author), Zhejiang Univ Technol, Coll Chem Engn, Hangzhou 310014, Peoples R China.. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one.

A visible-light photocatalytic aerobic oxidative lactonization of arene C(sp (2) )-H bonds proceeds in the presence of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and tert -butyl nitrite (TBN). Under the optimized conditions, a range of 2-arylbenzoic acids is converted into the corresponding benzocoumarin derivatives in moderate to excellent yields. This method is characterized by its atom economy, mild reaction conditions, the use of a green oxidant and metal-free catalysis.

Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.. Category: esters-buliding-blocks

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Discovery of Methyl 3-phenylpropionate

Welcome to talk about 103-25-3, If you have any questions, you can contact Dub, PA; Batrice, RJ; Gordon, JC; Scott, BL; Minko, Y; Schmidt, JG; Williams, RF or send Email.. Safety of Methyl 3-phenylpropionate

An article Engineering Catalysts for Selective Ester Hydrogenation WOS:000526347200008 published article about TETRADENTATE BIPYRIDINE LIGANDS; OXA-MICHAEL REACTION; RUTHENIUM COMPLEXES; ASYMMETRIC HYDROGENATION; EFFICIENT CATALYSTS; CARBOXYLIC ESTERS; ACID; MECHANISM; LITHIUM; TRIFLUOROACETALDEHYDE in [Dub, Pavel A.; Batrice, Rami J.; Gordon, John C.] Los Alamos Natl Lab, Chem Div, Los Alamos, NM 87545 USA; [Scott, Brian L.] Los Alamos Natl Lab, Mat & Phys Applicat Div, Los Alamos, NM 87545 USA; [Minko, Yury; Schmidt, Jurgen G.; Williams, Robert F.] Los Alamos Natl Lab, Biochem Div, Los Alamos, NM 87545 USA in 2020.0, Cited 116.0. Safety of Methyl 3-phenylpropionate. The Name is Methyl 3-phenylpropionate. Through research, I have a further understanding and discovery of 103-25-3

The development of efficient catalysts and processes for synthesizing functionalized (olefinic and/or chiral) primary alcohols and fluoral hemiacetals is currently needed. These are valuable building blocks for pharmaceuticals, agrochemicals, perfumes, and so forth. From an economic standpoint, bench-stable Takasago Int. Corp.’s Ru-PNP, more commonly known as RuMACHO, and Gusev’s Ru-SNS complexes are arguably the most appealing molecular catalysts to access primary alcohols from esters and H-2 (Waser, M. et al. Org. Proc. Res. Dev. 2018, 22, 862). This work introduces economically competitive Ru-SNP(O)(z) complexes (z = 0, 1), which combine key structural elements of both of these catalysts. In particular, the incorporation of SNP heteroatoms into the ligand skeleton was found to be crucial for the design of a more product-selective catalyst in the synthesis of fluoral hemiacetals under kinetically controlled conditions. Based on experimental observations and computational analysis, this paper further extends the current state-of-the-art understanding of the accelerative role of KO-t-C4H9 in ester hydrogenation. It attempts to explain why a maximum turnover is seen to occur starting at similar to 25 mol % base, in contrast to only similar to 10 mol % with ketones as substrates.

Welcome to talk about 103-25-3, If you have any questions, you can contact Dub, PA; Batrice, RJ; Gordon, JC; Scott, BL; Minko, Y; Schmidt, JG; Williams, RF or send Email.. Safety of Methyl 3-phenylpropionate

Reference:
Patent; SANOFI; US2011/294788; (2011); A1;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

An update on the compound challenge: 2005-10-9

Product Details of 2005-10-9. Welcome to talk about 2005-10-9, If you have any questions, you can contact Gini, A; Rigotti, T; Perez-Ruiz, R; Uygur, M; Mas-Balleste, R; Corral, I; Martinez-Fernandez, L; O’Shea, VAD; Mancheno, OG; Aleman, J or send Email.

Product Details of 2005-10-9. In 2019.0 CHEMPHOTOCHEM published article about PHOTOINDUCED ELECTRON-TRANSFER; ANTI-MARKOVNIKOV ADDITION; 9-MESITYL-10-METHYLACRIDINIUM ION; VISIBLE-LIGHT; OXYGENATION; DERIVATIVES; ACR(+)-MES; COMPLEXES; EVOLUTION; OXIDATION in [Gini, Andrea; Rigotti, Thomas; Aleman, Jose] Univ Autonoma Madrid, Fac Ciencias, Organ Chem Dept, Modulo 1,Calle Francisco Tomcis y Valiente 7, E-28049 Madrid, Spain; [Perez-Ruiz, Raul; de la Pena O’Shea, Victor A.] IMDEA Energy, Photoactivated Proc Unit, Av Ramon de la Sagra 3, Madrid 28935, Spain; [Uygur, Mustafa; Mancheno, Olga Garcia] Univ Munster, Organ Chem Inst, Corrensstr 40, D-48149 Munster, Germany; [Mas-Balleste, Ruben] Univ Autonoma Madrid, Fac Ciencias, Inorgan Chem Dept, Modulo 7,Calle Francisco Tomcis y Valiente 7, E-28049 Madrid, Spain; [Mas-Balleste, Ruben; Corral, Ines; Aleman, Jose] Univ Autonoma Madrid, Fac Ciencias, Inst Adv Res Chem Sci IAdChem, Calle Francisco Tomcis y Valiente 7, E-28049 Madrid, Spain; [Corral, Ines; Martinez-Fernandez, Lara] Univ Autonoma Madrid, Fac Ciencias, Condensed Matter Phys Ctr IFIMAC, Calle Francisco Tomcis y Valiente 7, E-28049 Madrid, Spain; [Corral, Ines] Univ Autonoma Madrid, Fac Ciencias, Chem Dept, Modulo 13,Calle Francisco Tomcis y Valiente 7, E-28049 Madrid, Spain in 2019.0, Cited 47.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

A study on C9-imide acridinium photocatalysts with enhanced photoredox catalytic activity with respect to the well-established C9-mesityl acridinium salt is presented. The differences observed rely on the diverse accessibility of singlet charge-transfer excited states, which have been proven by CASPT2/CASSCF calculations, fluorescence and quenching studies.

Product Details of 2005-10-9. Welcome to talk about 2005-10-9, If you have any questions, you can contact Gini, A; Rigotti, T; Perez-Ruiz, R; Uygur, M; Mas-Balleste, R; Corral, I; Martinez-Fernandez, L; O’Shea, VAD; Mancheno, OG; Aleman, J or send Email.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Simple exploration of Methyl 3-phenyl-2-propenoate

Welcome to talk about 103-26-4, If you have any questions, you can contact Wang, RY; Liu, H; Fan, CY; Gao, J; Chen, CM; Zheng, ZF or send Email.. Application In Synthesis of Methyl 3-phenyl-2-propenoate

Application In Synthesis of Methyl 3-phenyl-2-propenoate. Recently I am researching about BIMETALLIC NANOPARTICLES; ALIPHATIC-ALCOHOLS; EFFICIENT; CATALYSTS; GRAPHENE; ESTERS; METHANOL; ALDEHYDES; CLUSTERS; OXYGEN, Saw an article supported by the Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21703276, 21773284]; Shanxi Science and Technology Department [201801D221093]; Hundred Talents Programs of the Chinese Academy of Sciences and Shanxi Province. Published in ELSEVIER in AMSTERDAM ,Authors: Wang, RY; Liu, H; Fan, CY; Gao, J; Chen, CM; Zheng, ZF. The CAS is 103-26-4. Through research, I have a further understanding and discovery of Methyl 3-phenyl-2-propenoate

Direct selective oxidative esterification of readily available alcohols under mild conditions is an attractive approach to synthesis valuable esters. Developing high performance catalyst is the key factor to the efficient esters synthesis. We report graphene supported Au-Pd alloy catalyst exhibits excellent catalytic performance in the synthesis of methyl benzoate from benzyl alcohol and methanol, a turnover frequency (TOF) of 230 h(-1) and selectivity of 100% to methyl benzoate were achieved under 1 atm O-2 at 25 degrees C, which is superior to the majority of the state-of-the-art catalysts. Experimentally observed volcano-like reactivity trends and DFT calculations prove the outstanding performance was mainly ascribed to unique electronic structures of AuPd alloy catalyst for the adsorption and activation of reactant molecules. The catalytic reaction mechanism for interpretation of the structure-activity relationships of various catalysts at molecular level was investigated. The present study could help to unravel the synergistic effect of Au-Pd catalyst and provides a mild and efficient route for synthesis high-value esters in terms of green and sustainable chemistry.

Welcome to talk about 103-26-4, If you have any questions, you can contact Wang, RY; Liu, H; Fan, CY; Gao, J; Chen, CM; Zheng, ZF or send Email.. Application In Synthesis of Methyl 3-phenyl-2-propenoate

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Get Up to Speed Quickly on Emerging Topics:103-25-3

Application In Synthesis of Methyl 3-phenylpropionate. Bye, fridends, I hope you can learn more about C10H12O2, If you have any questions, you can browse other blog as well. See you lster.

Authors Kraevaya, OA; Peregudov, AS; Troyanov, SI; Godovikov, I; Fedorova, NE; Klimova, RR; Sergeeva, VA; Kameneva, LV; Ershova, ES; Martynenko, VM; Claes, S; Kushch, AA; Kostyuk, SV; Schols, D; Shestakov, AF; Troshin, PA in ROYAL SOC CHEMISTRY published article about CHLOROFULLERENE C60CL6; DERIVATIVES; VIRUS; FUNCTIONALIZATION; INHIBITION; CHEMISTRY; BIOLOGY; C-60; 1ST in [Kraevaya, Ol’ga A.; Troshin, Pavel A.] Skolkovo Inst Sci & Technol, Nobel St 3, Moscow 143026, Russia; [Kraevaya, Ol’ga A.; Martynenko, Vyacheslav M.; Shestakov, Alexander F.; Troshin, Pavel A.] RAS, IPCP, Semenov Prospect 1, Chernogolovka 141432, Russia; [Peregudov, Alexander S.; Godovikov, Ivan] RAS, INEOS, Vavylova St 28,B-334, Moscow 119991, Russia; [Troyanov, Sergey I.] Moscow Lomonosov State Univ, Dept Chem, Moscow, Russia; [Fedorova, Natalya E.; Klimova, Regina R.; Kushch, Alla A.] Minist Hlth Russian Federat, Honored Academcian NF Gamaleya Natl Res Ctr Epide, Gamaleya St 18, Moscow 123098, Russia; [Sergeeva, Vasilina A.; Kameneva, Larisa V.; Ershova, Elizaveta S.; Kostyuk, Svetlana V.] RAMS, Res Ctr Med Genet, Moskvoreche St 1, Moscow 115478, Russia; [Claes, Sandra; Schols, Dominique] Katholieke Univ Leuven, Rega Inst Med Res, Herestr 49, B-3000 Leuven, Belgium; [Shestakov, Alexander F.] Moscow Lomonosov State Univ, Fac Fundamental Phys & Chem Engn, GSP 1,1-51 Leninskie Gory, Moscow 119991, Russia in 2019.0, Cited 43.0. Application In Synthesis of Methyl 3-phenylpropionate. The Name is Methyl 3-phenylpropionate. Through research, I have a further understanding and discovery of 103-25-3

We report an inversed Arbuzov reaction of the fullerene derivatives C60Ar5Cl with trialkyl phosphites P(OR)(3) producing alkylated fullerene derivatives C60Ar5R (R = Me, Et, iPr, nBu) with almost quantitative yields. This reaction provides a convenient synthetic route for the preparation of a large variety of functionalized fullerene derivatives with tailored properties, e.g. water-soluble compounds demonstrating promising antiviral activities against HCMV, HSV1, HIV and several influenza virus strains.

Application In Synthesis of Methyl 3-phenylpropionate. Bye, fridends, I hope you can learn more about C10H12O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Patent; SANOFI; US2011/294788; (2011); A1;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Chemistry Milestones Of Methyl 3-phenyl-2-propenoate

HPLC of Formula: C10H10O2. Bye, fridends, I hope you can learn more about C10H10O2, If you have any questions, you can browse other blog as well. See you lster.

Authors Thounaojam, AS; Sakure, AA; Dhaduk, HL; Kumar, S; Mistry, JG in ELSEVIER published article about CHEMICAL-COMPOSITION; BASIL; L.; EUGENOL; YIELD; GENOTYPES; LINALOOL in [Thounaojam, Amarjeet S.; Dhaduk, Haresh L.] Anand Agr Univ, Med & Aromat Plants Res Stn, Anand, Gujarat, India; [Sakure, Amar A.; Kumar, Sushil; Mistry, Jigar G.] Anand Agr Univ, Dept Agr Biotechnol, Anand, Gujarat, India in 2020.0, Cited 59.0. HPLC of Formula: C10H10O2. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4

The genus Ocimum displays excellent variability among the species and sub-species due to the highly crosspollinated nature and interspecific hybridization. The present investigation was carried out to identify the commercially promising growth stage(s) in different Ocimum for exatraction of oil and bioactive compounds at heighest. A set of three cultivated species were evaluated to study the variation in morpho-physiological traits and essential oil composition harvested at three stages namely vegetative, flowering and seed setting stage. The experiment was conducted for three consecutive years in factorial randomized complete block design with three replicates. The analysis of variance exhibited that the individual effect of Ocimum species and growth stage along with their interaction effect was significant in all the morpho-physiological parameters and bioactive constituent of oil in a pooled analysis. Highest plant height (103.95 cm) was observed in O. gratissimum L. harvested at seed setting stage while harvesting at flowering stage exhibited maximum leaf area (26.80 cm(2)), oil (0.52 %) and eugenol content (85.82 %). Sweet basil harvested at seed setting stage disclosed maximum branches per plant (21.53) and leaves per plant (4949) although linalool content (47.99 %) was found highest in harvested at flowering stage. O. basilicum L. was detected a great source of methyl chavicol (7.48 %) though this species was weaker source for methyl cinnamate. Among the studied species, O. gratissimum showed a negligible amount of methyl eugenol content in oil. A positive correlation between the morpho-physiological traits, oil content and its constituents with the various growth stages were recorded. None of bioactive compounds exhibited any correlation with oil content. Principle component analysis revealed that of the total variation, O. gratissimum contributed maximum (61.58 %) variation followed by O. basilicum (35.36 %). The results of current study suggested that the different Ocimum species can be harvest at various growth stages to get the maximum yield and target chemical compounds based on the needy industrial value.

HPLC of Formula: C10H10O2. Bye, fridends, I hope you can learn more about C10H10O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Why do aromatic interactions matter of compound:C13H8O2

Quality Control of 6H-Benzo[c]chromen-6-one. Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.

Quality Control of 6H-Benzo[c]chromen-6-one. In 2020.0 TETRAHEDRON published article about ELECTRON-TRANSFER; HYDRIDE; IONS; DYES; AGGREGATION; REDUCTION; ROSAMINE; PROTON in [Meyer, Samantha M.; Charlesworth-Seiler, Eva M.; Patrow, Joel G.; Kitzrow, Jonathan P.; Gerlach, Deidra L.; Dahl, Bart J.] Univ Wisconsin, Dept Chem, Eau Claire, WI 54702 USA; [Reinheimer, Eric W.] Rigaku Amer Corp, 9009 New Trails Dr, The Woodlands, TX 77381 USA in 2020.0, Cited 40.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

This report describes the synthesis of five new colorful 6-aryldibenzo[b,d]pyrylium cation salts, a largely unexplored structural unit. These rare compounds are benzannulated structural derivatives of the well-known flavylium cations found widespread in natural pigments. These new dyes are directly compared to three previously synthesized 6-aryldibenzo[b,d]pyrylium cation salts as well as eight colorful isomeric 9-aryldibenzo[b,d]pyrylium cation, or 9-arylxanthylium, salts. The 9-arylxanthylium unit is commonly found in the biologically important rhodamine and rosamine dyes, yet six of the analogs presented in this study were either previously unreported or not isolated. The visual and spectroscopic properties of all 16 compounds were analyzed as a function of the structural differences between the compounds. All compounds displayed reversible halochromism in organic solution, displaying bright colors under acidic conditions and becoming colorless under basic conditions. (C) 2020 Elsevier Ltd. All rights reserved.

Quality Control of 6H-Benzo[c]chromen-6-one. Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Chemistry Milestones Of 6H-Benzo[c]chromen-6-one

Quality Control of 6H-Benzo[c]chromen-6-one. Welcome to talk about 2005-10-9, If you have any questions, you can contact Hauptmann, R; Petrosyan, A; Fennel, F; Cordero, MAA; Surkus, AE; Pospech, J or send Email.

In 2019.0 CHEM-EUR J published article about ELECTRON-TRANSFER PROCESS; Z ISOMERIZATION; PHOTOOXIDATIVE DECARBOXYLATION; PHOTOCATALYTIC E; PI INTERACTIONS; ACTIVATION; OXIDATION; CLEAVAGE in [Hauptmann, Richy; Petrosyan, Andranik; Cordero, Miguel A. Argueello; Surkus, Annette-E; Pospech, Jola] Univ Rostock, Leibniz Inst Catalysis, Albert Einstein Str 29a, D-18059 Rostock, Germany; [Fennel, Franziska; Cordero, Miguel A. Argueello] Univ Rostock, Inst Phys, Dynam Mol Syst, Albert Einstein Str 23-24, D-18059 Rostock, Germany in 2019.0, Cited 33.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9. Quality Control of 6H-Benzo[c]chromen-6-one

Herein we report the photo- and electrochemical characterization of pyrimidopteridine N-oxide-based heterocycles. The potential of their application as organic photoredox catalysts is showcased in the photomediated contra-thermodynamic E -> Z isomerization of cinnamic acid derivatives and oxidative cyclization of 2-phenyl benzoic acid to benzocoumarin using molecular oxygen as a mild oxidant. Furthermore, unprecedented intermolecular non-covalent n-pi-hole interactions in solid state are discussed based on crystallographic and theoretical data.

Quality Control of 6H-Benzo[c]chromen-6-one. Welcome to talk about 2005-10-9, If you have any questions, you can contact Hauptmann, R; Petrosyan, A; Fennel, F; Cordero, MAA; Surkus, AE; Pospech, J or send Email.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Some scientific research about C10H12O2

Safety of Methyl 3-phenylpropionate. About Methyl 3-phenylpropionate, If you have any questions, you can contact Wu, YC; Huang, YH; Chen, XY; Wang, P or concate me.

Safety of Methyl 3-phenylpropionate. I found the field of Chemistry very interesting. Saw the article Site-Selective Silylation of Arenes Mediated by Thianthrene S-Oxide published in 2020.0, Reprint Addresses Wang, P (corresponding author), Ctr Excellence Mol Synth, State Key Lab Organometall Chem, Shanghai 200032, Peoples R China.; Wang, P (corresponding author), Chinese Acad Sci, Shanghai Inst Organ Chem, Key Lab Energy Regulat Mat, Shanghai 200032, Peoples R China.. The CAS is 103-25-3. Through research, I have a further understanding and discovery of Methyl 3-phenylpropionate.

The thianthrene S-oxide (TTSO)-mediated site-selective silylation of arenes has been realized via a thianthrenation/Pd-catalyzed silylation sequence. This method features a broad substrate scope and wide functional group tolerance under mild conditions and allows the synthesis of a set of (hetero)arylsilanes with operationally simple manipulations. The application and generality of the approach were further demonstrated by the late-stage functionalization of marketed drugs. This reaction also represents the first example of a Pd-catalyzed silylation reaction of aryl sulfonium salts.

Safety of Methyl 3-phenylpropionate. About Methyl 3-phenylpropionate, If you have any questions, you can contact Wu, YC; Huang, YH; Chen, XY; Wang, P or concate me.

Reference:
Patent; SANOFI; US2011/294788; (2011); A1;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics