Can You Really Do Chemisty Experiments About Methyl 3-phenyl-2-propenoate

Category: esters-buliding-blocks. Welcome to talk about 103-26-4, If you have any questions, you can contact Tang, K; Tian, X; Ma, Y; Sun, YL; Qi, XC; Miu, CP; Xu, Y or send Email.

An article Aroma characteristics of Cabernet Sauvignon wines from Loess Plateau in China by QDA (R), Napping (R) and GC-O analysis WOS:000516055900001 published article about VOLATILE COMPOUNDS; WHITE WINES; PROFILE; REGION; ACIDS in [Tang, Ke; Tian, Xin; Ma, Yue; Sun, Yulu; Xu, Yan] Jiangnan Univ, Minist Educ, Key Lab Ind Biotechnol, 1800 Lihu Ave, Wuxi, Jiangsu, Peoples R China; [Tang, Ke; Tian, Xin; Ma, Yue; Sun, Yulu; Xu, Yan] Jiangnan Univ, State Key Lab Food Sci & Technol, 1800 Lihu Ave, Wuxi, Jiangsu, Peoples R China; [Qi, Xinchun; Miu, Chengpeng] Chateau Rongzi Co Ltd, Linfen, Shanxi, Peoples R China in 2020.0, Cited 37.0. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4. Category: esters-buliding-blocks

Loess Plateau is a new rapidly developing wine region in China, but wine style from this region is rarely studied. The aroma typicalies and differences of Cabernet Sauvignon wines between Loess Plateau and other three main regions (Shandong, Ningxia and Xinjiang) in China were comprehensively analyzed by Quantitative Descriptive Analysis (QDA (R)), Napping (R) and Gas Chromatography-Olfactometry (GC-O) analysis. Results showed that differences existed between wines from Loess Plateau and other three regions in China based on their aroma characteristics. The results of QDA (R) and Napping (R) revealed that wines from Loess Plateau had richer fruity aroma, especially the typical hawthorn aroma. A similar result showed that the fruity compounds had higher flavor dilution factors in wines from Loess Plateau by aroma extract dilution analysis. Identified by GC-O and gas chromatography-mass spectrometric, ethyl butanoate, isoamyl formate and butyl acetate were key compounds for the fruity aroma of wines from Loess Plateau.

Category: esters-buliding-blocks. Welcome to talk about 103-26-4, If you have any questions, you can contact Tang, K; Tian, X; Ma, Y; Sun, YL; Qi, XC; Miu, CP; Xu, Y or send Email.

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

The important role of 2005-10-9

Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.. Recommanded Product: 6H-Benzo[c]chromen-6-one

Sun, ST; Ma, YG; Liu, ZQ; Liu, L in [Sun, Shutao; Ma, Yingang; Liu, Ziqiang; Liu, Lei] Shandong Univ, Sch Pharmaceut Sci, Jinan 250100, Peoples R China; [Sun, Shutao; Liu, Lei] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China published Oxidative Kinetic Resolution of Cyclic Benzylic Ethers in 2021.0, Cited 69.0. Recommanded Product: 6H-Benzo[c]chromen-6-one. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

A manganese-catalyzed oxidative kinetic resolution of cyclic benzylic ethers through asymmetric C(sp(3))-H oxidation is reported. The practical approach is applicable to a wide range of 1,3-dihydroisobenzofurans bearing diverse functional groups and substituent patterns at the alpha position with extremely efficient enantiodiscrimination. The generality of the strategy was further demonstrated by efficient oxidative kinetic resolution of another type of five-membered cyclic benzylic ether, 2,3-dihydrobenzofurans, and six-membered 6H-benzo[c]chromenes. Direct late-stage oxidative kinetic resolution of bioactive molecules that are otherwise difficult to access was further explored.

Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.. Recommanded Product: 6H-Benzo[c]chromen-6-one

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Let`s talk about compound :Methyl 3-phenylpropionate

Category: esters-buliding-blocks. Bye, fridends, I hope you can learn more about C10H12O2, If you have any questions, you can browse other blog as well. See you lster.

An article Aldehyde effect and ligand discovery in Ru-catalyzed dehydrogenative cross-coupling of alcohols to esters WOS:000460683700012 published article about ACCEPTORLESS DEHYDROGENATION; ALIPHATIC-ALCOHOLS; COMPLEXES; OXIDATION; ESTERIFICATION in [Jiang, Xiaolin; Zhao, Dongmei] Shenyang Pharmaceut Univ, Minist Educ, Key Lab Struct Based Drug Design & Discovery, Shenyang 110016, Peoples R China; [Jiang, Xiaolin; Zhang, Jiahui; Li, Yuehui] Chinese Acad Sci, State Key Lab Oxo Synth & Select Oxidat, Lanzhou Inst Chem Phys, Suzhou Res Inst LICP, Lanzhou 730000, Peoples R China; [Zhang, Jiahui] Zhengzhou Univ, Coll Chem & Mol Engn, Zhengzhou 450001, Henan, Peoples R China in 2019.0, Cited 25.0. The Name is Methyl 3-phenylpropionate. Through research, I have a further understanding and discovery of 103-25-3. Category: esters-buliding-blocks

The presence of different aldehydes is found to have a significant influence on the catalytic performance when using PN(H)P type ligands for dehydrogenation of alcohols. Accordingly, hybrid multi-dentate ligands were discovered based on an oxygen-transfer alkylation of PNP ligands by aldehydes. The relevant Ru-PNN(PO) system provided the desired unsymmetrical esters in good yields via acceptorless dehydrogenation of alcohols. Hydrogen bonding interactions between the phosphine oxide moieties and alcohol substrates likely assisted the observed high chemoselectivity.

Category: esters-buliding-blocks. Bye, fridends, I hope you can learn more about C10H12O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Patent; SANOFI; US2011/294788; (2011); A1;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Why do aromatic interactions matter of compound:2005-10-9

Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.. Computed Properties of C13H8O2

Authors Rumyantsev, AV; Pichugov, AV; Bushkov, NS; Aleshin, DY; Strelkova, TV; Lependina, OL; Zhizhko, PA; Zarubin, DN in ROYAL SOC CHEMISTRY published article about in [Rumyantsev, Andrey, V; Pichugov, Andrey, V; Bushkov, Nikolai S.; Aleshin, Dmitry Yu; Strelkova, Tatyana, V; Lependina, Olga L.; Zhizhko, Pavel A.; Zarubin, Dmitry N.] Russian Acad Sci, AN Nesmeyanov Inst Organoelement Cpds, Vavilov Str 28, Moscow 119991, Russia; [Rumyantsev, Andrey, V; Bushkov, Nikolai S.] Moscow MV Lomonosov State Univ, Dept Chem, Vorobevy Gory 1, Moscow 119991, Russia; [Pichugov, Andrey, V; Aleshin, Dmitry Yu] D Mendeleev Univ Chem Technol Russia, Higher Chem Coll, Miusskaya Sq 9, Moscow 125047, Russia in 2021.0, Cited 33.0. Computed Properties of C13H8O2. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9

We report the first examples of direct imidation of lactones giving the corresponding cyclic imidates via oxo/imido heterometathesis with N-sulfinylamines catalysed by a well-defined silica-supported Ti imido complex.

Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.. Computed Properties of C13H8O2

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Some scientific research about 6H-Benzo[c]chromen-6-one

Computed Properties of C13H8O2. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Cheng, KY; Cai, ZQ; Fu, J; Sun, XB; Sun, WL; Chen, L; Zhang, DD; Liu, W or concate me.

Computed Properties of C13H8O2. In 2019.0 CHEM ENG J published article about HEAVY-METAL IONS; DEPOSITED TITANATE NANOTUBES; ZERO-VALENT IRON; WASTE-WATER; TITANIUM-DIOXIDE; SIMULTANEOUS REMOVAL; AQUEOUS-SOLUTIONS; TIO2; OXIDATION; MONTMORILLONITE in [Cheng, Kaiyu] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China; [Cai, Zhengqing; Sun, Xianbo] East China Univ Sci & Technol, Natl Engn Lab High Concentrat Refractory Organ Wa, Shanghai 200237, Peoples R China; [Cai, Zhengqing; Fu, Jie] Fudan Univ, Dept Environm Sci & Engn, Shanghai 200433, Peoples R China; [Sun, Weiliang] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China; [Chen, Long; Zhang, Dandan; Liu, Wen] Peking Univ, Key Lab Water & Sediment Sci, Minist Educ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China in 2019.0, Cited 66.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

Combined water pollution with the coexistence of heavy metals and organic contaminants is of great concern for practical wastewater treatment. In this study, a jaboticaba-like nanocomposite, titanate nanotubes supported TiO2 (TiO2/TiNTs), was synthesized by a two-step hydrothermal treatment. TiO2 /TiNTs had large surface area, abundant of -ONa/H groups and fine crystal anatase phase, thus exhibited both good adsorptive performance for Cu(II) and high photocatalytic activity for phenanthrene degradation. The maximum Cu(II) adsorption capacity on TiO2/TiNTs was 115.0 mg/g at pH 5 according to Langmuir isotherm model, and > 95% of phenanthrene was degraded within 4 h under UV light. TiO2/TiNTs showed about 10 times higher observed rate constant (k(obs) ) for phenanthrene degradation compared to the unmodified TiNTs. More importantly, the coexistence of Cu(II) promoted photocatalytic degradation of phenanthrene, because the incorporated Cu(II) in the lattice of TiNTs could trap photo-excited electron and thus inhibited the electron-hole recombination. Density functional theory (DFT) calculation indicated that the sites of phenanthrene with high Fukui index (f(0)) preferred to be attacked by center dot OH radicals. The quantitative structure-activity relationship (QSAR) analysis revealed that the degradation intermediates had lower acute toxicity and mutagenicity than phenanthrene. TiO2/TiNTs also owned high stability, as only slight loss of Cu(II) and phenanthrene removal efficiency was observed even after four reuse cycles. The developed material in this study is of great application potential for water or wastewater treatment with multi-contaminants, and this work can help us to better understand the mechanisms on reaction between Ti-based nanomaterials and different kinds of contaminants.

Computed Properties of C13H8O2. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Cheng, KY; Cai, ZQ; Fu, J; Sun, XB; Sun, WL; Chen, L; Zhang, DD; Liu, W or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Chemical Properties and Facts of C10H10O2

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Jiang, TY; Yuan, Y; Liu, SJ; Hunt, AJ; Tan, G or concate me.. Formula: C10H10O2

Authors Jiang, TY; Yuan, Y; Liu, SJ; Hunt, AJ; Tan, G in AMER CHEMICAL SOC published article about CROSS-COUPLING REACTION; MESOPOROUS SILICA; PD NANOPARTICLES; HECK REACTIONS; MIZOROKI-HECK; PYROLYSIS; CATALYST; SOLVENT; REACTOR; SUZUKI in [Jiang, Tengyao; Yuan, Yuan; Hunt, Andrew J.] Univ York, Green Chem Ctr Excellence, Dept Chem, York YO10 5DD, N Yorkshire, England; [Jiang, Tengyao; Liu, Sijia; Tan, Gang] Univ Wyoming, Dept Civil & Architectural Engn, Laramie, WY 82071 USA; [Yuan, Yuan] Chinese Acad Agr Sci, Marine Agr Res Ctr, Tobacco Res Inst, Qingdao 266101, Peoples R China in 2020.0, Cited 51.0. Formula: C10H10O2. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4

A highly active and recyclable Pd-deposited catalyst has been successfully prepared for the Heck reaction. Bio-oil liquid, a byproduct from the microwave pyrolysis of wastepaper, is employed to immobilize palladium nanoparticles on a solid support. FTIR, GC, and NMR results indicate the self-polymerization feature of bio-oil, thus giving rise to a uniform carbonaceous layer coated around the surface of the catalyst. Characteristic analysis of the catalyst indicates that palladium nanoparticles are well-dispersed on the parent SBA-15 solid substrate, which is attributed to the carbonaceous layer that is derived from bio-oil carbonization, allowing a high catalytic performance as a heterogeneous catalyst for the Heck reaction. The as-synthesized catalyst demonstrates remarkable recyclability with firm deposition of palladium nanoparticles on the solid support and could be reused without a activity. dramatic decrease in catalytic activity.

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Jiang, TY; Yuan, Y; Liu, SJ; Hunt, AJ; Tan, G or concate me.. Formula: C10H10O2

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Simple exploration of C10H12O2

Product Details of 103-25-3. Welcome to talk about 103-25-3, If you have any questions, you can contact Jiang, BL; Lin, Y; Wang, ML; Liu, DS; Xu, BH; Zhang, SJ or send Email.

In 2019.0 ORG CHEM FRONT published article about CHEMOSELECTIVE TRANSFER HYDROGENATION; C-H FUNCTIONALIZATION; OXIDATIVE ESTERIFICATION; TISHCHENKO REACTIONS; PRIMARY ALCOHOLS; INTERMOLECULAR HYDROACYLATION; INTRAMOLECULAR HYDROACYLATION; ALDOL CONDENSATIONS; BENZYLIC ALCOHOLS; COMPLEXES in [Jiang, Biao-Lin; Wang, Meng-Liang; Liu, Dian-Sheng] Shanxi Univ, Sch Chem & Chem Engn, Taiyuan 030006, Shanxi, Peoples R China; [Jiang, Biao-Lin; Lin, Yang; Xu, Bao-Hua; Zhang, Suo-Jiang] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing Key Lab Ion Liquids Clean Proc,Key Lab Gr, Beijing 100190, Peoples R China; [Lin, Yang] East China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China in 2019.0, Cited 73.0. The Name is Methyl 3-phenylpropionate. Through research, I have a further understanding and discovery of 103-25-3. Product Details of 103-25-3

An oxidative esterification of aldehydes with alkanols catalyzed by an in situ generated low-valent cobalt system has been developed using an enone as a mild oxidant. Mechanistic studies revealed that it proceeds through a Co(i)-catalyzed hydrogen-transfer route, wherein the -vinyl moiety in the bidentate enone functions as a hydride acceptor. Meanwhile, Co(i)-catalyzed formyl C-H activation occurred as a competing reaction leading to aldehyde dimerization. The occurrence of the usually kinetically disfavored hydride transfer step therein was significantly increased in the presence of an enone reacting as a hydride transfer initiator.

Product Details of 103-25-3. Welcome to talk about 103-25-3, If you have any questions, you can contact Jiang, BL; Lin, Y; Wang, ML; Liu, DS; Xu, BH; Zhang, SJ or send Email.

Reference:
Patent; SANOFI; US2011/294788; (2011); A1;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Machine Learning in Chemistry about C10H10O2

Computed Properties of C10H10O2. Welcome to talk about 103-26-4, If you have any questions, you can contact Schluter, A; Huhn, T; Kneubuhl, M; Chatelain, K; Rohn, S; Chetschik, I or send Email.

Computed Properties of C10H10O2. Recently I am researching about PRECURSORS; SEEDS; PULP; IDENTIFICATION; ACIDIFICATION; PROTEIN; PROFILE; ACIDS, Saw an article supported by the . Published in AMER CHEMICAL SOC in WASHINGTON ,Authors: Schluter, A; Huhn, T; Kneubuhl, M; Chatelain, K; Rohn, S; Chetschik, I. The CAS is 103-26-4. Through research, I have a further understanding and discovery of Methyl 3-phenyl-2-propenoate

The aroma properties of cocoa nibs obtained by applying a novel postharvest treatment were investigated using methods of the molecular sensory science approach, i.e., solvent extraction and solvent-assisted flavor evaporation, aroma extract dilution analysis (AEDA), stable isotope dilution analysis, calculation of odor activity values (OAVs), and orthonasal sensory evaluation; those properties were then compared to the unfermented and dried raw material and a traditionally fermented sample of the same harvest. For the treatment, unfermented and dried cocoa nibs were, first, rehydrated with lactic acid and ethanol solution to adjust the pH value to 5.1 and, second, incubated under aerobic conditions for 72 h at 45 degrees C and subsequently dried. This treatment was used to induce enzymatic reactions within the cotyledon matrix, which also occur inside the bean during microbial fermentation of the surrounding fruit pulp. The results of the AEDA showed that many of the key aroma compounds found in fermented and dried cocoa increased during the incubation treatment. Especially some fruity esters were found with an equal or even higher flavor dilution (FD) factor in the incubated sample compared to the fermented sample, whereas the fermented sample showed high FD factors for pungent, sour and sweaty acids, such as acetic acid and 2- and 3-methylbutanoic acids. The quantitative data and calculated OAVs for the samples supported the findings of the AEDA, underlining the potential of this approach as a controllable and reproducible alternative postharvest treatment.

Computed Properties of C10H10O2. Welcome to talk about 103-26-4, If you have any questions, you can contact Schluter, A; Huhn, T; Kneubuhl, M; Chatelain, K; Rohn, S; Chetschik, I or send Email.

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

New learning discoveries about 103-26-4

Bye, fridends, I hope you can learn more about C10H10O2, If you have any questions, you can browse other blog as well. See you lster.. Safety of Methyl 3-phenyl-2-propenoate

Safety of Methyl 3-phenyl-2-propenoate. In 2019.0 MOLECULES published article about ASYMMETRIC CONJUGATE ADDITION; ENANTIOSELECTIVE INSERTION; BONDS; CATALYSTS; DESIGN; IMINES in [Knoll, Daniel M.; Hu, Yuling; Hassan, Zahid; Braese, Stefan] Karlsruhe Inst Technol, IOC, Fritz Haber Weg 6, D-76131 Karlsruhe, Germany; [Nieger, Martin] Univ Helsinki, Dept Chem, POB 55 AI Virtasen Aukio 1, FIN-00014 Helsinki, Finland; [Braese, Stefan] Karlsruhe Inst Technol, ITG, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany in 2019.0, Cited 26.0. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4.

New catalysts for important C-N bond formation are highly sought after. In this work, we demonstrate the synthesis and viability of a new class of planar chiral [2.2]paracyclophane-based bisoxazoline (BOX) ligands for the copper-catalyzed N-H insertion of alpha -diazocarbonyls into anilines. The reaction features a wide substrate scope and moderate to excellent yields, and delivers the valuable products at ambient conditions.

Bye, fridends, I hope you can learn more about C10H10O2, If you have any questions, you can browse other blog as well. See you lster.. Safety of Methyl 3-phenyl-2-propenoate

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Discovery of C10H12O2

Application In Synthesis of Methyl 3-phenylpropionate. About Methyl 3-phenylpropionate, If you have any questions, you can contact Jiang, BL; Lin, Y; Wang, ML; Liu, DS; Xu, BH; Zhang, SJ or concate me.

Application In Synthesis of Methyl 3-phenylpropionate. In 2019.0 ORG CHEM FRONT published article about CHEMOSELECTIVE TRANSFER HYDROGENATION; C-H FUNCTIONALIZATION; OXIDATIVE ESTERIFICATION; TISHCHENKO REACTIONS; PRIMARY ALCOHOLS; INTERMOLECULAR HYDROACYLATION; INTRAMOLECULAR HYDROACYLATION; ALDOL CONDENSATIONS; BENZYLIC ALCOHOLS; COMPLEXES in [Jiang, Biao-Lin; Wang, Meng-Liang; Liu, Dian-Sheng] Shanxi Univ, Sch Chem & Chem Engn, Taiyuan 030006, Shanxi, Peoples R China; [Jiang, Biao-Lin; Lin, Yang; Xu, Bao-Hua; Zhang, Suo-Jiang] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing Key Lab Ion Liquids Clean Proc,Key Lab Gr, Beijing 100190, Peoples R China; [Lin, Yang] East China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China in 2019.0, Cited 73.0. The Name is Methyl 3-phenylpropionate. Through research, I have a further understanding and discovery of 103-25-3.

An oxidative esterification of aldehydes with alkanols catalyzed by an in situ generated low-valent cobalt system has been developed using an enone as a mild oxidant. Mechanistic studies revealed that it proceeds through a Co(i)-catalyzed hydrogen-transfer route, wherein the -vinyl moiety in the bidentate enone functions as a hydride acceptor. Meanwhile, Co(i)-catalyzed formyl C-H activation occurred as a competing reaction leading to aldehyde dimerization. The occurrence of the usually kinetically disfavored hydride transfer step therein was significantly increased in the presence of an enone reacting as a hydride transfer initiator.

Application In Synthesis of Methyl 3-phenylpropionate. About Methyl 3-phenylpropionate, If you have any questions, you can contact Jiang, BL; Lin, Y; Wang, ML; Liu, DS; Xu, BH; Zhang, SJ or concate me.

Reference:
Patent; SANOFI; US2011/294788; (2011); A1;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics