Satake, Akiharu’s team published research in Chemistry Letters in 1999-01-31 | CAS: 86549-27-1

Chemistry Letters published new progress about Acetals, ketene Role: RCT (Reactant), RACT (Reactant or Reagent) (silyl). 86549-27-1 belongs to class esters-buliding-blocks, name is Ethyl 2,2-dimethylpent-4-enoate, and the molecular formula is C9H16O2, COA of Formula: C9H16O2.

Satake, Akiharu published the artcileCyclopropanation of ketene silyl acetals with allylic acetates using η3-allylpalladium-pyridinylimidazole catalysts, COA of Formula: C9H16O2, the main research area is cyclopropanation ketene silyl acetal allyl acetate; stereoselective cyclopropanation cyclopropanation ketene silyl acetal allyl acetate; stereochem cyclopropanation ketene silyl acetal allyl acetate; phenyl cyclopropane preparation.

Highly selective cyclopropanation of ketene silyl acetals with allylic acetates was carried out in the presence of novel η3-allylpalladium-pyridinylimidazole complexes and sodium acetate in DMSO at room temperature When cinnamyl acetate was used as an allylic acetate, phenylcyclopropane derivative was obtained stereoselectively in 83% yield.

Chemistry Letters published new progress about Acetals, ketene Role: RCT (Reactant), RACT (Reactant or Reagent) (silyl). 86549-27-1 belongs to class esters-buliding-blocks, name is Ethyl 2,2-dimethylpent-4-enoate, and the molecular formula is C9H16O2, COA of Formula: C9H16O2.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Zhao, Jing’s team published research in Food Research International in 2020-12-31 | CAS: 106-32-1

Food Research International published new progress about Acids Role: AGR (Agricultural Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Category: esters-buliding-blocks.

Zhao, Jing published the artcileVolatile constituents and ellagic acid formation in strawberry fruits of selected cultivars, Category: esters-buliding-blocks, the main research area is volatile constituent ellagic acid formation strawberry fruit cultivar; Ellagic acid; Fragaria × ananassa; GC–MS; Sensory quality; Volatile profile.

Strawberries (Fragaria x ananassa Duch.) are considered a functional food and pleasing fruit in China, mainly because of their high concentration of ellagic acid (EA) and their aroma. A total of 127 volatile compounds were identified by HS-SPME-GC-MS. Changes in volatile constituents and EA were investigated in 50 strawberry cultivars in the red-ripening stage and in 6 cultivars, including ‘Benihoppe’, ‘Snow White’, ‘Yanli’, ‘Kaorino’, ‘Tokun’, and ‘Xiaobai’, at four developmental stages. The results indicated that the components and amounts of volatile compounds and EA markedly varied among and within cultivars. Through multivariate statistical anal. of the volatile compounds, 50 cultivars were divided into 4 clusters. Aromatic components that affected the cluster formation of cultivars were detected. Volatile compounds varied quant. among the 6 varieties during the developmental stages, and distinct changes were observed in both red-turning fruits and red-ripening fruits compared with white fruits. Except for ‘Xiaobai’, which showed the highest EA content at the red-ripening stage, the other 5 cultivars exhibited the highest EA level at the large green fruit stage. Partial least squares-discriminant anal. (PLS-DA) of the profiles of volatile compounds indicated that large green fruits were characterized by EA and aldehydes; white fruits were characterized by ketones and alkanes; and red-ripening fruits were characterized by esters, acids, furans, and alcs. The results contribute new and important information to breeding programs and the desirable cultivation of strawberry production

Food Research International published new progress about Acids Role: AGR (Agricultural Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Category: esters-buliding-blocks.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Zhang, Xiao’s team published research in LWT–Food Science and Technology in 2022-02-01 | CAS: 106-32-1

LWT–Food Science and Technology published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Related Products of esters-buliding-blocks.

Zhang, Xiao published the artcileComparative evaluation of the effects of natural and artificial inoculation on soybean paste fermentation, Related Products of esters-buliding-blocks, the main research area is soybean paste natural artificial inoculation fermentation.

Soybean pastes fermented with natural (NIS) and artificial (AIS) inoculation were prepared to evaluate their fermentation characteristics, flavor compounds and microbial community compositions across an entire fermentation period. The results showed that the initial concentrations of free amino acids and aroma compounds were higher in NIS than in AIS, whereas it was opposite at the end of fermentation A larger variation of flavor compounds was observed in AIS, which was associated with higher level of microbial metabolism during AIS fermentation Penicillium and Tetragenococcus were the dominant microbial genera in NIS, while Aspergillus and Pediococcus were predominant in AIS. Correlation anal. of flavor compounds and microbial community dynamics during NIS and AIS fermentation revealed the specific role of microbial taxa in metabolite transformations. Pediococcus acidilactici could be the key microorganism strongly associated with 23 flavor compounds during AIS fermentation Further, Aspergillus oryzae and Pediococcus acidilactici were primarily linked to amino acid metabolism in AIS, whereas Penicillium and Yaniella were found associated with aroma compounds, Tetragenococcus_sp_JNURIC_D6 and Candida solani with that of organic acids in NIS. These findings provide substantial data on the development of flavor-enhancing fermentation starter culture and the better control of flavor ripening in soybean paste production

LWT–Food Science and Technology published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Related Products of esters-buliding-blocks.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Liu, Jian’s team published research in European Food Research and Technology in 2020-04-30 | CAS: 106-32-1

European Food Research and Technology published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Computed Properties of 106-32-1.

Liu, Jian published the artcileCharacterization of major properties and aroma profile of kiwi wine co-cultured by Saccharomyces yeast (S. cerevisiae, S. bayanus, S. uvarum) and T. delbrueckii, Computed Properties of 106-32-1, the main research area is Saccharomyces Torulaspora kiwi wine aroma flavor.

The effect of different yeast strains on the quality of kiwi wine was investigated by polyphase determine approaches in the present research. The influence of co-culture and inoculation sequence on the quality was also explored simultaneously. Results suggested that the characteristics of the kiwi wine were affected by the metabolic characteristic of strains. The flavor content and their flavor profile of samples fermented by co-culturing of strain among species, genus, and families. When Saccharomyces bayanus (Y5 or Y6) co-cultured with Torulaspora delbrueckii Y7, the ratio of phenethyl alc. increased, but that of octanoic acid and Et octanoate decreased significantly. The odor activity value (OAV) of Et octanoate and Et hexanoate was increased by co-culturing Saccharomyces with T. delbrueckii, and that of decanal and terpinen-4-ol was enhanced by co-culturing of different strains of Saccharomyces. It was an excepting process to obtain high quality of kiwi wine by co-culturing technol. of yeasts, and was very effective to optimize the process by polyphase anal. approaches.

European Food Research and Technology published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Computed Properties of 106-32-1.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Yang, Yurong’s team published research in Journal of Food Science and Technology (New Delhi, India) in 2021-10-31 | CAS: 106-32-1

Journal of Food Science and Technology (New Delhi, India) published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Formula: C10H20O2.

Yang, Yurong published the artcileCharacterization of the key aroma compounds of a sweet rice alcoholic beverage fermented with Saccharomycopsis fibuligera, Formula: C10H20O2, the main research area is Saccharomycopsis fibuligera aroma compound sweet rice alc beverage fermentation; Key aroma compounds; Saccharomycopsis fibuligera; Sweet rice alcoholic beverage.

This study aimcharacterization of key aroma compounds of sweet rice alc. beverage fermented with Saccharomycopsis fibuligeras to examine the effect of the non-Saccharomyces yeast Saccharomycopsis fibuligera on the sensory quality and flavor characteristics of a sweet rice alc. beverage. The strain S. fibuligera was isolated from a traditional Chinese hand-made starter with the purpose to improving sweet rice wine fragrance. Here, sweet rice wines were produced by six combinations of three species of fermentation strains, including S. fibuligera, Rhizopus and Saccharomyces cerevisiae, for evaluation. The study results showed significant diversities within these rice wines based on indicators including the score of quant. descriptive anal. and volatile variety and content as well as odor activity value (OAV). Quant. results showed that 43 volatile compounds were identified by headspace-solid phase microextraction with gas chromatog.-mass spectrometry among samples. Based on the principal component anal. and OAV calculation, the two samples (S-2 and S-3) fermented with S. fibuligera and Rhizopus possessed high scores and were distinguished from the others, and Et butanoate, Et hexanoate, β-phenylethyl alc. and 1-octen-3-one with high OAVs were responsible for the key aroma of sweet rice wine fermented with S. fibuligera. Co-inoculating S. fibuligera, Rhizopus or/and S. cerevisiae generated more pleasant aroma compounds in a sweet rice alc. beverage than when inoculated individually.

Journal of Food Science and Technology (New Delhi, India) published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Formula: C10H20O2.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Sun, Xuefei’s team published research in Food and Bioproducts Processing in 2020-09-30 | CAS: 106-32-1

Food and Bioproducts Processing published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Quality Control of 106-32-1.

Sun, Xuefei published the artcileProduction of alcohol-free wine and grape spirit by pervaporation membrane technology, Quality Control of 106-32-1, the main research area is alc free wine grape spirit pervaporation membrane technol.

This study reports on production of alc.-free wine and grape spirit from red wine using pilot-scale pervaporation membrane equipment. The ethanol and aroma substances were concentrated from the wine via an organophilic pervaporation membrane, which were further processed by the membrane to obtain an ethanol content above 50 volume%. The separation performance for ethanol/water and red wine was compared to show that fouling existed when processing the red wine, and the 1st-stage permeate was found to be an excellent cleaning agent that can recover 99.15% of the initial flux. The results of aroma anal. showed that 65-70 wt% of the aroma substances existed in the permeate of pervaporation, which exhibited better smell and taste than traditional distilled liquor. The membrane performance was stable for the separation of red wine during 180 days of continuous operation. Though the investment and operating cost of pilot-scale equipment are relatively high, remuneration can be greatly improved by the utilization of alc.-free wine and grape spirit.

Food and Bioproducts Processing published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Quality Control of 106-32-1.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Ali, Barkat’s team published research in LWT–Food Science and Technology in 2022-01-15 | CAS: 123-29-5

LWT–Food Science and Technology published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Recommanded Product: Ethyl nonanoate.

Ali, Barkat published the artcileImpact of Soy-Cow’s mixed milk enzyme modified cheese on bread aroma, Recommanded Product: Ethyl nonanoate, the main research area is milk enzyme modified cheese bread aroma volatile compound.

The effect of spray-dried Soy-Cow’s mixed milk enzyme modified (SC-EM) cheese on wheat dough properties and bread aroma was evaluated at either 0.1, 0.5, 1.0, 1.5 or 2.0% (weight/weight). Significant accumulation of amino acids and peptides of dough were noted as SC-EM cheese levels increased. After baking a total of 118 volatile compounds (VCs) were identified in breads having aldehydes, alcs., esters and acids in major proportions. Higher contents of Maillard product 3-hydroxy-2-butanone, 2-methyl-1-propanol, phenylethyl alc., undecane, L-limonene, 2-pentyl furan and lipid oxidation compounds hexanoic acid Et ester, octanoic acid Et ester, decanoic acid Et ester, butanoic acid, hexanoic acid and octanoic acid were observed Isoamyl alc., lactic acid Et ester, Et sorbate and sorbic acid were the newly identified VCs. These results revealed that SC-EM cheese could be used as improver in dough and contribution to bread aroma. Thus, SC-EM cheese has been proposed to be included in fortified bakery products.

LWT–Food Science and Technology published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Recommanded Product: Ethyl nonanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Ali, Barkat’s team published research in LWT–Food Science and Technology in 2022-01-15 | CAS: 106-32-1

LWT–Food Science and Technology published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Product Details of C10H20O2.

Ali, Barkat published the artcileImpact of Soy-Cow’s mixed milk enzyme modified cheese on bread aroma, Product Details of C10H20O2, the main research area is milk enzyme modified cheese bread aroma volatile compound.

The effect of spray-dried Soy-Cow’s mixed milk enzyme modified (SC-EM) cheese on wheat dough properties and bread aroma was evaluated at either 0.1, 0.5, 1.0, 1.5 or 2.0% (weight/weight). Significant accumulation of amino acids and peptides of dough were noted as SC-EM cheese levels increased. After baking a total of 118 volatile compounds (VCs) were identified in breads having aldehydes, alcs., esters and acids in major proportions. Higher contents of Maillard product 3-hydroxy-2-butanone, 2-methyl-1-propanol, phenylethyl alc., undecane, L-limonene, 2-pentyl furan and lipid oxidation compounds hexanoic acid Et ester, octanoic acid Et ester, decanoic acid Et ester, butanoic acid, hexanoic acid and octanoic acid were observed Isoamyl alc., lactic acid Et ester, Et sorbate and sorbic acid were the newly identified VCs. These results revealed that SC-EM cheese could be used as improver in dough and contribution to bread aroma. Thus, SC-EM cheese has been proposed to be included in fortified bakery products.

LWT–Food Science and Technology published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Product Details of C10H20O2.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Abouelenein, Doaa’s team published research in Molecules in 2021 | CAS: 111-11-5

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 111-11-5 belongs to class esters-buliding-blocks, name is Methyl octanoate, and the molecular formula is C9H18O2, Quality Control of 111-11-5.

Abouelenein, Doaa published the artcileInfluence of Freezing and Different Drying Methods on Volatile Profiles of Strawberry and Analysis of Volatile Compounds of Strawberry Commercial Jams, Quality Control of 111-11-5, the main research area is freezing drying volatile compound strawberry com jam; HS-SPME/GC-MS; aroma; commercial jams; drying methods; freezing; strawberry; volatile organic compounds.

Strawberry is the most consumed berry fruit worldwide due to its unique aroma and flavor. Drying fruits to produce a powder represents one of the possible conservation methods to extend their shelf-life. The aim of the present study was to compare the influence of freezing and different drying methods on the volatile profile of strawberry using the HS-SPME/GC-MS method, in addition to anal. of strawberry jam volatiles. A total of 165 compounds were identified, accounting for 85.03-96.88% of the total volatile compositions Results and PCA showed that freezing and each drying process affected the volatile profile in a different way, and the most remarkable representative differential volatiles were Et hexanoate, hexyl acetate, (E)-2-hexenyl acetate, mesifurane, (E)-nerolidol, γ-decalactone, 1-hexanol, and acetoin. Shade air-dried, frozen, freeze-dried, and oven-dried 45°C samples retained more of the fruity and sweet aromas of strawberry, representing more than 68% of the total aroma intensity according to the literature. In contrast, the microwave-drying method showed drastic loss of fruity esters. Strawberry jams demonstrated complete destruction of esters and alcs. in most jams, while terpenes were significantly increased. These findings help better understand the aroma of strawberry and provide a guide for the effects of drying, freezing, and jam processing.

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 111-11-5 belongs to class esters-buliding-blocks, name is Methyl octanoate, and the molecular formula is C9H18O2, Quality Control of 111-11-5.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Abouelenein, Doaa’s team published research in Molecules in 2021 | CAS: 123-29-5

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Formula: C11H22O2.

Abouelenein, Doaa published the artcileInfluence of Freezing and Different Drying Methods on Volatile Profiles of Strawberry and Analysis of Volatile Compounds of Strawberry Commercial Jams, Formula: C11H22O2, the main research area is freezing drying volatile compound strawberry com jam; HS-SPME/GC-MS; aroma; commercial jams; drying methods; freezing; strawberry; volatile organic compounds.

Strawberry is the most consumed berry fruit worldwide due to its unique aroma and flavor. Drying fruits to produce a powder represents one of the possible conservation methods to extend their shelf-life. The aim of the present study was to compare the influence of freezing and different drying methods on the volatile profile of strawberry using the HS-SPME/GC-MS method, in addition to anal. of strawberry jam volatiles. A total of 165 compounds were identified, accounting for 85.03-96.88% of the total volatile compositions Results and PCA showed that freezing and each drying process affected the volatile profile in a different way, and the most remarkable representative differential volatiles were Et hexanoate, hexyl acetate, (E)-2-hexenyl acetate, mesifurane, (E)-nerolidol, γ-decalactone, 1-hexanol, and acetoin. Shade air-dried, frozen, freeze-dried, and oven-dried 45°C samples retained more of the fruity and sweet aromas of strawberry, representing more than 68% of the total aroma intensity according to the literature. In contrast, the microwave-drying method showed drastic loss of fruity esters. Strawberry jams demonstrated complete destruction of esters and alcs. in most jams, while terpenes were significantly increased. These findings help better understand the aroma of strawberry and provide a guide for the effects of drying, freezing, and jam processing.

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Formula: C11H22O2.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics