Abouelenein, Doaa’s team published research in Molecules in 2021 | CAS: 110-42-9

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 110-42-9 belongs to class esters-buliding-blocks, name is Methyl decanoate, and the molecular formula is C11H22O2, Synthetic Route of 110-42-9.

Abouelenein, Doaa published the artcileInfluence of Freezing and Different Drying Methods on Volatile Profiles of Strawberry and Analysis of Volatile Compounds of Strawberry Commercial Jams, Synthetic Route of 110-42-9, the main research area is freezing drying volatile compound strawberry com jam; HS-SPME/GC-MS; aroma; commercial jams; drying methods; freezing; strawberry; volatile organic compounds.

Strawberry is the most consumed berry fruit worldwide due to its unique aroma and flavor. Drying fruits to produce a powder represents one of the possible conservation methods to extend their shelf-life. The aim of the present study was to compare the influence of freezing and different drying methods on the volatile profile of strawberry using the HS-SPME/GC-MS method, in addition to anal. of strawberry jam volatiles. A total of 165 compounds were identified, accounting for 85.03-96.88% of the total volatile compositions Results and PCA showed that freezing and each drying process affected the volatile profile in a different way, and the most remarkable representative differential volatiles were Et hexanoate, hexyl acetate, (E)-2-hexenyl acetate, mesifurane, (E)-nerolidol, γ-decalactone, 1-hexanol, and acetoin. Shade air-dried, frozen, freeze-dried, and oven-dried 45°C samples retained more of the fruity and sweet aromas of strawberry, representing more than 68% of the total aroma intensity according to the literature. In contrast, the microwave-drying method showed drastic loss of fruity esters. Strawberry jams demonstrated complete destruction of esters and alcs. in most jams, while terpenes were significantly increased. These findings help better understand the aroma of strawberry and provide a guide for the effects of drying, freezing, and jam processing.

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 110-42-9 belongs to class esters-buliding-blocks, name is Methyl decanoate, and the molecular formula is C11H22O2, Synthetic Route of 110-42-9.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Abouelenein, Doaa’s team published research in Molecules in 2021 | CAS: 106-32-1

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Recommanded Product: Ethyl octanoate.

Abouelenein, Doaa published the artcileInfluence of Freezing and Different Drying Methods on Volatile Profiles of Strawberry and Analysis of Volatile Compounds of Strawberry Commercial Jams, Recommanded Product: Ethyl octanoate, the main research area is freezing drying volatile compound strawberry com jam; HS-SPME/GC-MS; aroma; commercial jams; drying methods; freezing; strawberry; volatile organic compounds.

Strawberry is the most consumed berry fruit worldwide due to its unique aroma and flavor. Drying fruits to produce a powder represents one of the possible conservation methods to extend their shelf-life. The aim of the present study was to compare the influence of freezing and different drying methods on the volatile profile of strawberry using the HS-SPME/GC-MS method, in addition to anal. of strawberry jam volatiles. A total of 165 compounds were identified, accounting for 85.03-96.88% of the total volatile compositions Results and PCA showed that freezing and each drying process affected the volatile profile in a different way, and the most remarkable representative differential volatiles were Et hexanoate, hexyl acetate, (E)-2-hexenyl acetate, mesifurane, (E)-nerolidol, γ-decalactone, 1-hexanol, and acetoin. Shade air-dried, frozen, freeze-dried, and oven-dried 45°C samples retained more of the fruity and sweet aromas of strawberry, representing more than 68% of the total aroma intensity according to the literature. In contrast, the microwave-drying method showed drastic loss of fruity esters. Strawberry jams demonstrated complete destruction of esters and alcs. in most jams, while terpenes were significantly increased. These findings help better understand the aroma of strawberry and provide a guide for the effects of drying, freezing, and jam processing.

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Recommanded Product: Ethyl octanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Abouelenein, Doaa’s team published research in Molecules in 2021 | CAS: 5405-41-4

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Formula: C6H12O3.

Abouelenein, Doaa published the artcileInfluence of Freezing and Different Drying Methods on Volatile Profiles of Strawberry and Analysis of Volatile Compounds of Strawberry Commercial Jams, Formula: C6H12O3, the main research area is freezing drying volatile compound strawberry com jam; HS-SPME/GC-MS; aroma; commercial jams; drying methods; freezing; strawberry; volatile organic compounds.

Strawberry is the most consumed berry fruit worldwide due to its unique aroma and flavor. Drying fruits to produce a powder represents one of the possible conservation methods to extend their shelf-life. The aim of the present study was to compare the influence of freezing and different drying methods on the volatile profile of strawberry using the HS-SPME/GC-MS method, in addition to anal. of strawberry jam volatiles. A total of 165 compounds were identified, accounting for 85.03-96.88% of the total volatile compositions Results and PCA showed that freezing and each drying process affected the volatile profile in a different way, and the most remarkable representative differential volatiles were Et hexanoate, hexyl acetate, (E)-2-hexenyl acetate, mesifurane, (E)-nerolidol, γ-decalactone, 1-hexanol, and acetoin. Shade air-dried, frozen, freeze-dried, and oven-dried 45°C samples retained more of the fruity and sweet aromas of strawberry, representing more than 68% of the total aroma intensity according to the literature. In contrast, the microwave-drying method showed drastic loss of fruity esters. Strawberry jams demonstrated complete destruction of esters and alcs. in most jams, while terpenes were significantly increased. These findings help better understand the aroma of strawberry and provide a guide for the effects of drying, freezing, and jam processing.

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 5405-41-4 belongs to class esters-buliding-blocks, name is Ethyl 3-hydroxybutanoate, and the molecular formula is C6H12O3, Formula: C6H12O3.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Abouelenein, Doaa’s team published research in Molecules in 2021 | CAS: 123-29-5

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Formula: C11H22O2.

Abouelenein, Doaa published the artcileInfluence of Freezing and Different Drying Methods on Volatile Profiles of Strawberry and Analysis of Volatile Compounds of Strawberry Commercial Jams, Formula: C11H22O2, the main research area is freezing drying volatile compound strawberry com jam; HS-SPME/GC-MS; aroma; commercial jams; drying methods; freezing; strawberry; volatile organic compounds.

Strawberry is the most consumed berry fruit worldwide due to its unique aroma and flavor. Drying fruits to produce a powder represents one of the possible conservation methods to extend their shelf-life. The aim of the present study was to compare the influence of freezing and different drying methods on the volatile profile of strawberry using the HS-SPME/GC-MS method, in addition to anal. of strawberry jam volatiles. A total of 165 compounds were identified, accounting for 85.03-96.88% of the total volatile compositions Results and PCA showed that freezing and each drying process affected the volatile profile in a different way, and the most remarkable representative differential volatiles were Et hexanoate, hexyl acetate, (E)-2-hexenyl acetate, mesifurane, (E)-nerolidol, γ-decalactone, 1-hexanol, and acetoin. Shade air-dried, frozen, freeze-dried, and oven-dried 45°C samples retained more of the fruity and sweet aromas of strawberry, representing more than 68% of the total aroma intensity according to the literature. In contrast, the microwave-drying method showed drastic loss of fruity esters. Strawberry jams demonstrated complete destruction of esters and alcs. in most jams, while terpenes were significantly increased. These findings help better understand the aroma of strawberry and provide a guide for the effects of drying, freezing, and jam processing.

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Formula: C11H22O2.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Abouelenein, Doaa’s team published research in Molecules in 2021 | CAS: 111-11-5

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 111-11-5 belongs to class esters-buliding-blocks, name is Methyl octanoate, and the molecular formula is C9H18O2, Quality Control of 111-11-5.

Abouelenein, Doaa published the artcileInfluence of Freezing and Different Drying Methods on Volatile Profiles of Strawberry and Analysis of Volatile Compounds of Strawberry Commercial Jams, Quality Control of 111-11-5, the main research area is freezing drying volatile compound strawberry com jam; HS-SPME/GC-MS; aroma; commercial jams; drying methods; freezing; strawberry; volatile organic compounds.

Strawberry is the most consumed berry fruit worldwide due to its unique aroma and flavor. Drying fruits to produce a powder represents one of the possible conservation methods to extend their shelf-life. The aim of the present study was to compare the influence of freezing and different drying methods on the volatile profile of strawberry using the HS-SPME/GC-MS method, in addition to anal. of strawberry jam volatiles. A total of 165 compounds were identified, accounting for 85.03-96.88% of the total volatile compositions Results and PCA showed that freezing and each drying process affected the volatile profile in a different way, and the most remarkable representative differential volatiles were Et hexanoate, hexyl acetate, (E)-2-hexenyl acetate, mesifurane, (E)-nerolidol, γ-decalactone, 1-hexanol, and acetoin. Shade air-dried, frozen, freeze-dried, and oven-dried 45°C samples retained more of the fruity and sweet aromas of strawberry, representing more than 68% of the total aroma intensity according to the literature. In contrast, the microwave-drying method showed drastic loss of fruity esters. Strawberry jams demonstrated complete destruction of esters and alcs. in most jams, while terpenes were significantly increased. These findings help better understand the aroma of strawberry and provide a guide for the effects of drying, freezing, and jam processing.

Molecules published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 111-11-5 belongs to class esters-buliding-blocks, name is Methyl octanoate, and the molecular formula is C9H18O2, Quality Control of 111-11-5.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Ali, Barkat’s team published research in LWT–Food Science and Technology in 2022-01-15 | CAS: 106-32-1

LWT–Food Science and Technology published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Product Details of C10H20O2.

Ali, Barkat published the artcileImpact of Soy-Cow’s mixed milk enzyme modified cheese on bread aroma, Product Details of C10H20O2, the main research area is milk enzyme modified cheese bread aroma volatile compound.

The effect of spray-dried Soy-Cow’s mixed milk enzyme modified (SC-EM) cheese on wheat dough properties and bread aroma was evaluated at either 0.1, 0.5, 1.0, 1.5 or 2.0% (weight/weight). Significant accumulation of amino acids and peptides of dough were noted as SC-EM cheese levels increased. After baking a total of 118 volatile compounds (VCs) were identified in breads having aldehydes, alcs., esters and acids in major proportions. Higher contents of Maillard product 3-hydroxy-2-butanone, 2-methyl-1-propanol, phenylethyl alc., undecane, L-limonene, 2-pentyl furan and lipid oxidation compounds hexanoic acid Et ester, octanoic acid Et ester, decanoic acid Et ester, butanoic acid, hexanoic acid and octanoic acid were observed Isoamyl alc., lactic acid Et ester, Et sorbate and sorbic acid were the newly identified VCs. These results revealed that SC-EM cheese could be used as improver in dough and contribution to bread aroma. Thus, SC-EM cheese has been proposed to be included in fortified bakery products.

LWT–Food Science and Technology published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Product Details of C10H20O2.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Ali, Barkat’s team published research in LWT–Food Science and Technology in 2022-01-15 | CAS: 123-29-5

LWT–Food Science and Technology published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Recommanded Product: Ethyl nonanoate.

Ali, Barkat published the artcileImpact of Soy-Cow’s mixed milk enzyme modified cheese on bread aroma, Recommanded Product: Ethyl nonanoate, the main research area is milk enzyme modified cheese bread aroma volatile compound.

The effect of spray-dried Soy-Cow’s mixed milk enzyme modified (SC-EM) cheese on wheat dough properties and bread aroma was evaluated at either 0.1, 0.5, 1.0, 1.5 or 2.0% (weight/weight). Significant accumulation of amino acids and peptides of dough were noted as SC-EM cheese levels increased. After baking a total of 118 volatile compounds (VCs) were identified in breads having aldehydes, alcs., esters and acids in major proportions. Higher contents of Maillard product 3-hydroxy-2-butanone, 2-methyl-1-propanol, phenylethyl alc., undecane, L-limonene, 2-pentyl furan and lipid oxidation compounds hexanoic acid Et ester, octanoic acid Et ester, decanoic acid Et ester, butanoic acid, hexanoic acid and octanoic acid were observed Isoamyl alc., lactic acid Et ester, Et sorbate and sorbic acid were the newly identified VCs. These results revealed that SC-EM cheese could be used as improver in dough and contribution to bread aroma. Thus, SC-EM cheese has been proposed to be included in fortified bakery products.

LWT–Food Science and Technology published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 123-29-5 belongs to class esters-buliding-blocks, name is Ethyl nonanoate, and the molecular formula is C11H22O2, Recommanded Product: Ethyl nonanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Sun, Xuefei’s team published research in Food and Bioproducts Processing in 2020-09-30 | CAS: 106-32-1

Food and Bioproducts Processing published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Quality Control of 106-32-1.

Sun, Xuefei published the artcileProduction of alcohol-free wine and grape spirit by pervaporation membrane technology, Quality Control of 106-32-1, the main research area is alc free wine grape spirit pervaporation membrane technol.

This study reports on production of alc.-free wine and grape spirit from red wine using pilot-scale pervaporation membrane equipment. The ethanol and aroma substances were concentrated from the wine via an organophilic pervaporation membrane, which were further processed by the membrane to obtain an ethanol content above 50 volume%. The separation performance for ethanol/water and red wine was compared to show that fouling existed when processing the red wine, and the 1st-stage permeate was found to be an excellent cleaning agent that can recover 99.15% of the initial flux. The results of aroma anal. showed that 65-70 wt% of the aroma substances existed in the permeate of pervaporation, which exhibited better smell and taste than traditional distilled liquor. The membrane performance was stable for the separation of red wine during 180 days of continuous operation. Though the investment and operating cost of pilot-scale equipment are relatively high, remuneration can be greatly improved by the utilization of alc.-free wine and grape spirit.

Food and Bioproducts Processing published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Quality Control of 106-32-1.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Yang, Yurong’s team published research in Journal of Food Science and Technology (New Delhi, India) in 2021-10-31 | CAS: 106-32-1

Journal of Food Science and Technology (New Delhi, India) published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Formula: C10H20O2.

Yang, Yurong published the artcileCharacterization of the key aroma compounds of a sweet rice alcoholic beverage fermented with Saccharomycopsis fibuligera, Formula: C10H20O2, the main research area is Saccharomycopsis fibuligera aroma compound sweet rice alc beverage fermentation; Key aroma compounds; Saccharomycopsis fibuligera; Sweet rice alcoholic beverage.

This study aimcharacterization of key aroma compounds of sweet rice alc. beverage fermented with Saccharomycopsis fibuligeras to examine the effect of the non-Saccharomyces yeast Saccharomycopsis fibuligera on the sensory quality and flavor characteristics of a sweet rice alc. beverage. The strain S. fibuligera was isolated from a traditional Chinese hand-made starter with the purpose to improving sweet rice wine fragrance. Here, sweet rice wines were produced by six combinations of three species of fermentation strains, including S. fibuligera, Rhizopus and Saccharomyces cerevisiae, for evaluation. The study results showed significant diversities within these rice wines based on indicators including the score of quant. descriptive anal. and volatile variety and content as well as odor activity value (OAV). Quant. results showed that 43 volatile compounds were identified by headspace-solid phase microextraction with gas chromatog.-mass spectrometry among samples. Based on the principal component anal. and OAV calculation, the two samples (S-2 and S-3) fermented with S. fibuligera and Rhizopus possessed high scores and were distinguished from the others, and Et butanoate, Et hexanoate, β-phenylethyl alc. and 1-octen-3-one with high OAVs were responsible for the key aroma of sweet rice wine fermented with S. fibuligera. Co-inoculating S. fibuligera, Rhizopus or/and S. cerevisiae generated more pleasant aroma compounds in a sweet rice alc. beverage than when inoculated individually.

Journal of Food Science and Technology (New Delhi, India) published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Formula: C10H20O2.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Yang, Yurong’s team published research in Journal of Food Science and Technology (New Delhi, India) in 2021-10-31 | CAS: 41114-00-5

Journal of Food Science and Technology (New Delhi, India) published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 41114-00-5 belongs to class esters-buliding-blocks, name is Ethyl pentadecanoate, and the molecular formula is C17H34O2, Quality Control of 41114-00-5.

Yang, Yurong published the artcileCharacterization of the key aroma compounds of a sweet rice alcoholic beverage fermented with Saccharomycopsis fibuligera, Quality Control of 41114-00-5, the main research area is Saccharomycopsis fibuligera aroma compound sweet rice alc beverage fermentation; Key aroma compounds; Saccharomycopsis fibuligera; Sweet rice alcoholic beverage.

This study aimcharacterization of key aroma compounds of sweet rice alc. beverage fermented with Saccharomycopsis fibuligeras to examine the effect of the non-Saccharomyces yeast Saccharomycopsis fibuligera on the sensory quality and flavor characteristics of a sweet rice alc. beverage. The strain S. fibuligera was isolated from a traditional Chinese hand-made starter with the purpose to improving sweet rice wine fragrance. Here, sweet rice wines were produced by six combinations of three species of fermentation strains, including S. fibuligera, Rhizopus and Saccharomyces cerevisiae, for evaluation. The study results showed significant diversities within these rice wines based on indicators including the score of quant. descriptive anal. and volatile variety and content as well as odor activity value (OAV). Quant. results showed that 43 volatile compounds were identified by headspace-solid phase microextraction with gas chromatog.-mass spectrometry among samples. Based on the principal component anal. and OAV calculation, the two samples (S-2 and S-3) fermented with S. fibuligera and Rhizopus possessed high scores and were distinguished from the others, and Et butanoate, Et hexanoate, β-phenylethyl alc. and 1-octen-3-one with high OAVs were responsible for the key aroma of sweet rice wine fermented with S. fibuligera. Co-inoculating S. fibuligera, Rhizopus or/and S. cerevisiae generated more pleasant aroma compounds in a sweet rice alc. beverage than when inoculated individually.

Journal of Food Science and Technology (New Delhi, India) published new progress about Acids Role: FFD (Food or Feed Use), BIOL (Biological Study), USES (Uses). 41114-00-5 belongs to class esters-buliding-blocks, name is Ethyl pentadecanoate, and the molecular formula is C17H34O2, Quality Control of 41114-00-5.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics