Downstream Synthetic Route Of 6H-Benzo[c]chromen-6-one

Recommanded Product: 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Ravotti, R; Fellmann, O; Lardon, N; Fischer, LJ; Stamatiou, A; Worlitschek, J or concate me.

Authors Ravotti, R; Fellmann, O; Lardon, N; Fischer, LJ; Stamatiou, A; Worlitschek, J in MDPI published article about THERMAL-ENERGY STORAGE; ACID in [Ravotti, Rebecca; Fellmann, Oliver; Lardon, Nicolas; Fischer, Ludger J.; Stamatiou, Anastasia; Worlitschek, Joerg] Lucerne Univ Appl Sci & Arts, Competence Ctr Thermal Energy Storage TES, CH-6048 Horw, Switzerland; [Lardon, Nicolas] Max Planck Inst Med Res, D-69120 Heidelberg, Germany in 2019.0, Cited 25.0. Recommanded Product: 6H-Benzo[c]chromen-6-one. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9

In the presented work, five bio-based and bio-degradable cyclic esters, i.e. lactones, have been investigated as possible phase change materials for applications in latent heat storage systems. Commercial natural lactones such as epsilon-caprolactone and gamma-valerolactone were easily purchased through chemical suppliers, while 1,2-campholide, oxa-adamantanone and dibenzochromen-6-one were synthesized through Baeyer-Villiger oxidation. The compounds were characterized with respect to attenuated total reflectance spectroscopy and gas chromatography coupled with mass spectroscopy, in order to confirm their chemical structures and identity. Subsequently, thermogravimetric analysis and differential scanning calorimetry were used to measure the phase change temperatures, enthalpies of fusion, degradation temperatures, as well to estimate the degree of supercooling. The lactones showed a wide range of phase change temperatures from -40 degrees C to 290 degrees C, making them a high interest for both low and high temperature latent heat storage applications, given the lack of organic phase change materials covering phase change temperature ranges below 0 degrees C and above 80 degrees C. However, low enthalpies of fusion, high degrees of supercooling and thermal degradations at low temperatures were registered for all samples, rendering them unsuitable as phase change materials.

Recommanded Product: 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Ravotti, R; Fellmann, O; Lardon, N; Fischer, LJ; Stamatiou, A; Worlitschek, J or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

The important role of 6H-Benzo[c]chromen-6-one

Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.. Formula: C13H8O2

Formula: C13H8O2. Recently I am researching about CHARGE-TRANSFER; ORGANIC COCRYSTALS; MOLECULAR-COMPLEX; DESIGN; ANTHRACENE; PYRENE; WILL, Saw an article supported by the Engineering and Physical Sciences Research Council (EPSRC)UK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/S026339/1]; EPSRCUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/R018472/1]; Leverhulme TrustLeverhulme Trust; Leverhulme Research Centre for Functional Materials Design via the Leverhulme Research Centre for Functional Materials Design [RC-2015-036]; Cambridge Crystallographic Data Centre. Published in ROYAL SOC CHEMISTRY in CAMBRIDGE ,Authors: Vriza, A; Canaj, AB; Vismara, R; Cook, LJK; Manning, TD; Gaultois, MW; Wood, PA; Kurlin, V; Berry, N; Dyer, MS; Rosseinsky, MJ. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one

The implementation of machine learning models has brought major changes in the decision-making process for materials design. One matter of concern for the data-driven approaches is the lack of negative data from unsuccessful synthetic attempts, which might generate inherently imbalanced datasets. We propose the application of the one-class classification methodology as an effective tool for tackling these limitations on the materials design problems. This is a concept of learning based only on a well-defined class without counter examples. An extensive study on the different one-class classification algorithms is performed until the most appropriate workflow is identified for guiding the discovery of emerging materials belonging to a relatively small class, that being the weakly bound polyaromatic hydrocarbon co-crystals. The two-step approach presented in this study first trains the model using all the known molecular combinations that form this class of co-crystals extracted from the Cambridge Structural Database (1722 molecular combinations), followed by scoring possible yet unknown pairs from the ZINC15 database (21 736 possible molecular combinations). Focusing on the highest-ranking pairs predicted to have higher probability of forming co-crystals, materials discovery can be accelerated by reducing the vast molecular space and directing the synthetic efforts of chemists. Further on, using interpretability techniques a more detailed understanding of the molecular properties causing co-crystallization is sought after. The applicability of the current methodology is demonstrated with the discovery of two novel co-crystals, namely pyrene-6H-benzo[c]chromen-6-one (1) and pyrene-9,10-dicyanoanthracene (2).

Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.. Formula: C13H8O2

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

What Kind of Chemistry Facts Are We Going to Learn About C13H8O2

Name: 6H-Benzo[c]chromen-6-one. Welcome to talk about 2005-10-9, If you have any questions, you can contact Li, HJ; Subbotina, E; Bunrit, A; Wang, F; Samec, JSM or send Email.

Recently I am researching about C-H AMINATION; EXCITED-STATE; LIGNIN; BENZENE; SPIROCYCLIZATION; NAPHTHALENE; DERIVATIVES; CYCLIZATION; OXIDATION; CLEAVAGE, Saw an article supported by the National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21711530020, 21721004, 21690082, 21690084, 21690080]; Strategic Priority Research Program of the Chinese Academy of SciencesChinese Academy of Sciences [XDB17020300, XDB17000000]; STINT [CH2016-6755]; NSFCNational Natural Science Foundation of China (NSFC); Swedish Energy AgencySwedish Energy Agency [P39427-1]. Published in ROYAL SOC CHEMISTRY in CAMBRIDGE ,Authors: Li, HJ; Subbotina, E; Bunrit, A; Wang, F; Samec, JSM. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one. Name: 6H-Benzo[c]chromen-6-one

The idea of using biaryl structures to generate synthetic building blocks such as spirolactones is attractive because biaryl structures are abundant in biomass waste streams. However, the inertness of aromatic rings of biaryls makes it challenging to transform them into functionalized structures. In this work, we developed photoinduced dearomatization of nonphenolic biaryl compounds to generate spirolactones. We demonstrate that dearomatization can be performed via either aerobic photocatalysis or anaerobic photooxidation to tolerate specific synthetic conditions. In both pathways, dearomatization is induced by electrophilic attack of the carboxyl radical. The resulting spirodiene radical is captured by either oxygen or water in aerobic and anaerobic systems, respectively, to generate the spirodienone. These methods represent novel routes to synthesize spirolactones from the biaryl motif.

Name: 6H-Benzo[c]chromen-6-one. Welcome to talk about 2005-10-9, If you have any questions, you can contact Li, HJ; Subbotina, E; Bunrit, A; Wang, F; Samec, JSM or send Email.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

What advice would you give a new faculty member or graduate student interested in a career 2005-10-9

Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.. Category: esters-buliding-blocks

Recently I am researching about O BOND FORMATION; CARBOXYLIC-ACIDS; BENZOCOUMARINS; LACTONIZATION; CYCLIZATION; ACCESS; NIS, Saw an article supported by the JSPS KAKENHIMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceGrants-in-Aid for Scientific Research (KAKENHI) [JP18K05118]. Published in PERGAMON-ELSEVIER SCIENCE LTD in OXFORD ,Authors: Nakamura, M; Togo, H. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one. Category: esters-buliding-blocks

Treatment of 2-arylbenzoic acids with N-chlorosuccinimide (NCS) and NaI at 70 degrees C under fluorescent lighting condition gave the corresponding 3,4-benzocoumarins in good yields under transition-metal-free condition. It was found that the reactivity of NCS with NaI for the formation of 3,4-benzocoumarins from 2-arylbenzoic acids was as high as that with NIS. Thus, the formation of carboxyl radicals and their cyclization onto an aromatic ring from 2-arylbenzoic acids with much less expensive NCS and NaI, than NIS could be successfully carried out to form 3,4-benzocoumarins.

Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.. Category: esters-buliding-blocks

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

What Kind of Chemistry Facts Are We Going to Learn About 2005-10-9

Name: 6H-Benzo[c]chromen-6-one. Welcome to talk about 2005-10-9, If you have any questions, you can contact Cheng, KY; Cai, ZQ; Fu, J; Sun, XB; Sun, WL; Chen, L; Zhang, DD; Liu, W or send Email.

Cheng, KY; Cai, ZQ; Fu, J; Sun, XB; Sun, WL; Chen, L; Zhang, DD; Liu, W in [Cheng, Kaiyu] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China; [Cai, Zhengqing; Sun, Xianbo] East China Univ Sci & Technol, Natl Engn Lab High Concentrat Refractory Organ Wa, Shanghai 200237, Peoples R China; [Cai, Zhengqing; Fu, Jie] Fudan Univ, Dept Environm Sci & Engn, Shanghai 200433, Peoples R China; [Sun, Weiliang] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China; [Chen, Long; Zhang, Dandan; Liu, Wen] Peking Univ, Key Lab Water & Sediment Sci, Minist Educ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China published Synergistic adsorption of Cu(II) and photocatalytic degradation of phenanthrene by a jaboticaba-like TiO2/titanate nanotube composite: An experimental and theoretical study in 2019.0, Cited 66.0. Name: 6H-Benzo[c]chromen-6-one. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

Combined water pollution with the coexistence of heavy metals and organic contaminants is of great concern for practical wastewater treatment. In this study, a jaboticaba-like nanocomposite, titanate nanotubes supported TiO2 (TiO2/TiNTs), was synthesized by a two-step hydrothermal treatment. TiO2 /TiNTs had large surface area, abundant of -ONa/H groups and fine crystal anatase phase, thus exhibited both good adsorptive performance for Cu(II) and high photocatalytic activity for phenanthrene degradation. The maximum Cu(II) adsorption capacity on TiO2/TiNTs was 115.0 mg/g at pH 5 according to Langmuir isotherm model, and > 95% of phenanthrene was degraded within 4 h under UV light. TiO2/TiNTs showed about 10 times higher observed rate constant (k(obs) ) for phenanthrene degradation compared to the unmodified TiNTs. More importantly, the coexistence of Cu(II) promoted photocatalytic degradation of phenanthrene, because the incorporated Cu(II) in the lattice of TiNTs could trap photo-excited electron and thus inhibited the electron-hole recombination. Density functional theory (DFT) calculation indicated that the sites of phenanthrene with high Fukui index (f(0)) preferred to be attacked by center dot OH radicals. The quantitative structure-activity relationship (QSAR) analysis revealed that the degradation intermediates had lower acute toxicity and mutagenicity than phenanthrene. TiO2/TiNTs also owned high stability, as only slight loss of Cu(II) and phenanthrene removal efficiency was observed even after four reuse cycles. The developed material in this study is of great application potential for water or wastewater treatment with multi-contaminants, and this work can help us to better understand the mechanisms on reaction between Ti-based nanomaterials and different kinds of contaminants.

Name: 6H-Benzo[c]chromen-6-one. Welcome to talk about 2005-10-9, If you have any questions, you can contact Cheng, KY; Cai, ZQ; Fu, J; Sun, XB; Sun, WL; Chen, L; Zhang, DD; Liu, W or send Email.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Interesting scientific research on 2005-10-9

Welcome to talk about 2005-10-9, If you have any questions, you can contact Khosravi, K; Naserifar, S or send Email.. Application In Synthesis of 6H-Benzo[c]chromen-6-one

I found the field of Chemistry very interesting. Saw the article Urea-2,2-dihydroperoxypropane as a Novel and High Oxygen Content Alternative to Dihydroperoxypropane in Several Oxidation Reactions published in 2019.0. Application In Synthesis of 6H-Benzo[c]chromen-6-one, Reprint Addresses Khosravi, K (corresponding author), Arak Univ, Dept Chem, Fac Sci, Arak 3815688349, Iran.. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one

Urea-2,2-dihydroperoxypropane (UDHPP)- a white crystalline solid oxidant which is formed when urea is recrystallized from dihydroperoxypropane- was applied as the terminal oxidant in several oxidative procedures namely epoxidation of alpha, beta-unsaturated ketones and alkenes, oxidation of sulfides to sulfoxides and sulfones, bayer-villeger reaction, bromination and iodation of aniline and phenol derivatives, oxidative esterification, oxidative amidation of aromatic aldehydes, thiocyanation of aromatic compounds, and oxidation of pyridines, oxidation of secondary, allylic and benzylic alcohols. All the approaches were carried out under mild conditions and short reaction times and afforded the corresponding products in high yields.

Welcome to talk about 2005-10-9, If you have any questions, you can contact Khosravi, K; Naserifar, S or send Email.. Application In Synthesis of 6H-Benzo[c]chromen-6-one

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Now Is The Time For You To Know The Truth About C13H8O2

Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.. Name: 6H-Benzo[c]chromen-6-one

Hauptmann, R; Petrosyan, A; Fennel, F; Cordero, MAA; Surkus, AE; Pospech, J in [Hauptmann, Richy; Petrosyan, Andranik; Cordero, Miguel A. Argueello; Surkus, Annette-E; Pospech, Jola] Univ Rostock, Leibniz Inst Catalysis, Albert Einstein Str 29a, D-18059 Rostock, Germany; [Fennel, Franziska; Cordero, Miguel A. Argueello] Univ Rostock, Inst Phys, Dynam Mol Syst, Albert Einstein Str 23-24, D-18059 Rostock, Germany published Pyrimidopteridine N-Oxide Organic Photoredox Catalysts: Characterization, Application and Non-Covalent Interaction in Solid State in 2019.0, Cited 33.0. Name: 6H-Benzo[c]chromen-6-one. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

Herein we report the photo- and electrochemical characterization of pyrimidopteridine N-oxide-based heterocycles. The potential of their application as organic photoredox catalysts is showcased in the photomediated contra-thermodynamic E -> Z isomerization of cinnamic acid derivatives and oxidative cyclization of 2-phenyl benzoic acid to benzocoumarin using molecular oxygen as a mild oxidant. Furthermore, unprecedented intermolecular non-covalent n-pi-hole interactions in solid state are discussed based on crystallographic and theoretical data.

Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.. Name: 6H-Benzo[c]chromen-6-one

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Awesome Chemistry Experiments For C13H8O2

SDS of cas: 2005-10-9. Welcome to talk about 2005-10-9, If you have any questions, you can contact Meyer, SM; Charlesworth-Seiler, EM; Patrow, JG; Kitzrow, JP; Gerlach, DL; Reinheimer, EW; Dahl, BJ or send Email.

SDS of cas: 2005-10-9. In 2020.0 TETRAHEDRON published article about ELECTRON-TRANSFER; HYDRIDE; IONS; DYES; AGGREGATION; REDUCTION; ROSAMINE; PROTON in [Meyer, Samantha M.; Charlesworth-Seiler, Eva M.; Patrow, Joel G.; Kitzrow, Jonathan P.; Gerlach, Deidra L.; Dahl, Bart J.] Univ Wisconsin, Dept Chem, Eau Claire, WI 54702 USA; [Reinheimer, Eric W.] Rigaku Amer Corp, 9009 New Trails Dr, The Woodlands, TX 77381 USA in 2020.0, Cited 40.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

This report describes the synthesis of five new colorful 6-aryldibenzo[b,d]pyrylium cation salts, a largely unexplored structural unit. These rare compounds are benzannulated structural derivatives of the well-known flavylium cations found widespread in natural pigments. These new dyes are directly compared to three previously synthesized 6-aryldibenzo[b,d]pyrylium cation salts as well as eight colorful isomeric 9-aryldibenzo[b,d]pyrylium cation, or 9-arylxanthylium, salts. The 9-arylxanthylium unit is commonly found in the biologically important rhodamine and rosamine dyes, yet six of the analogs presented in this study were either previously unreported or not isolated. The visual and spectroscopic properties of all 16 compounds were analyzed as a function of the structural differences between the compounds. All compounds displayed reversible halochromism in organic solution, displaying bright colors under acidic conditions and becoming colorless under basic conditions. (C) 2020 Elsevier Ltd. All rights reserved.

SDS of cas: 2005-10-9. Welcome to talk about 2005-10-9, If you have any questions, you can contact Meyer, SM; Charlesworth-Seiler, EM; Patrow, JG; Kitzrow, JP; Gerlach, DL; Reinheimer, EW; Dahl, BJ or send Email.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Some scientific research about 6H-Benzo[c]chromen-6-one

Welcome to talk about 2005-10-9, If you have any questions, you can contact Ravotti, R; Fellmann, O; Lardon, N; Fischer, LJ; Stamatiou, A; Worlitschek, J or send Email.. Recommanded Product: 2005-10-9

Recommanded Product: 2005-10-9. In 2019.0 MOLECULES published article about THERMAL-ENERGY STORAGE; ACID in [Ravotti, Rebecca; Fellmann, Oliver; Lardon, Nicolas; Fischer, Ludger J.; Stamatiou, Anastasia; Worlitschek, Joerg] Lucerne Univ Appl Sci & Arts, Competence Ctr Thermal Energy Storage TES, CH-6048 Horw, Switzerland; [Lardon, Nicolas] Max Planck Inst Med Res, D-69120 Heidelberg, Germany in 2019.0, Cited 25.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

In the presented work, five bio-based and bio-degradable cyclic esters, i.e. lactones, have been investigated as possible phase change materials for applications in latent heat storage systems. Commercial natural lactones such as epsilon-caprolactone and gamma-valerolactone were easily purchased through chemical suppliers, while 1,2-campholide, oxa-adamantanone and dibenzochromen-6-one were synthesized through Baeyer-Villiger oxidation. The compounds were characterized with respect to attenuated total reflectance spectroscopy and gas chromatography coupled with mass spectroscopy, in order to confirm their chemical structures and identity. Subsequently, thermogravimetric analysis and differential scanning calorimetry were used to measure the phase change temperatures, enthalpies of fusion, degradation temperatures, as well to estimate the degree of supercooling. The lactones showed a wide range of phase change temperatures from -40 degrees C to 290 degrees C, making them a high interest for both low and high temperature latent heat storage applications, given the lack of organic phase change materials covering phase change temperature ranges below 0 degrees C and above 80 degrees C. However, low enthalpies of fusion, high degrees of supercooling and thermal degradations at low temperatures were registered for all samples, rendering them unsuitable as phase change materials.

Welcome to talk about 2005-10-9, If you have any questions, you can contact Ravotti, R; Fellmann, O; Lardon, N; Fischer, LJ; Stamatiou, A; Worlitschek, J or send Email.. Recommanded Product: 2005-10-9

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Never Underestimate The Influence Of C13H8O2

Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.. Recommanded Product: 2005-10-9

Recommanded Product: 2005-10-9. I found the field of Pharmacology & Pharmacy; Chemistry very interesting. Saw the article Bridged-Selective Intramolecular Diels-Alder Reactions in the Synthesis of Bicyclo[2.2.2]octanes published in 2020.0, Reprint Addresses Matsuo, J (corresponding author), Kanazawa Univ, Grad Sch Med Sci, Div Pharmaceut Sci, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan.. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one.

Regioselectivity for intramolecular Diels-Alder (IMDA) reactions of 6-acetoxy-6-alkenylcyclohexa-2,4-dien-1-ones that were formed by oxidation of 2-alkenylphenols with lead tetraacetate in acetic acid were studied. Bridged regioselectivity was observed in the IMDA reactions of 6-acetoxy-6-alkenylcyclohexa-2,4-dien-1-ones having a dienophile part which could conjugate with an aromatic group. Bridged seven-and eight-membered rings and bicyclo[2.2.2]octane skeletons were constructed by the present IMDA reactions. Density functional theory (DFT) calculations suggested that conjugation of the dienophile with neighboring aromatic groups lowered the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap and preceded bridged [4 + 2] adducts.

Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.. Recommanded Product: 2005-10-9

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics