An update on the compound challenge: 2005-10-9

Product Details of 2005-10-9. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Bhunia, SK; Das, P; Nandi, S; Jana, R or concate me.

Bhunia, SK; Das, P; Nandi, S; Jana, R in [Bhunia, Samir Kumar; Das, Pritha; Nandi, Shantanu; Jana, Ranjan] CSIR Indian Inst Chem Biol, Organ & Med Chem Div, 4 Raja SC Mullick Rd, Kolkata 700032, W Bengal, India; [Bhunia, Samir Kumar; Jana, Ranjan] Acad Sci & Innovat Res AcSIR, Kolkata 700032, W Bengal, India published Carboxylation of Aryl Triflates with CO2 Merging Palladium and Visible-Light-Photoredox Catalysts in 2019.0, Cited 88.0. Product Details of 2005-10-9. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

We report herein a visible-light-promoted, highly practical carboxylation of readily accessible aryl triflates at ambient temperature and a balloon pressure of CO2 by the combined use of palladium and photoredox Ir(III) catalysts. Strikingly, the stoichiometric metallic reductant is replaced by a nonmetallic amine reductant providing an environmentally benign carboxylation process. In addition, one-pot synthesis of a carboxylic acid directly from phenol and modification of estrone and concise synthesis of pharmaceutical drugs adapalene and bexarotene have been accomplished via late-stage carboxylation reaction. Furthermore, a parallel decarboxylation-carboxylation reaction has been demonstrated in an H-type closed vessel that is an interesting concept for the strategic sector. Spectroscopic and spectroelectrochemical studies indicated electron transfer from the Ir(III)/DIPEA combination to generate aryl carboxylate and Pd(0) for catalytic turnover.

Product Details of 2005-10-9. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Bhunia, SK; Das, P; Nandi, S; Jana, R or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

New learning discoveries about 6H-Benzo[c]chromen-6-one

Category: esters-buliding-blocks. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Sun, ST; Ma, YG; Liu, ZQ; Liu, L or concate me.

Category: esters-buliding-blocks. In 2021.0 ANGEW CHEM INT EDIT published article about C-H BONDS; RACEMIC SECONDARY ALCOHOLS; HYDROGEN-PEROXIDE; ASYMMETRIC EPOXIDATION; OXOCARBENIUM IONS; AEROBIC OXIDATION; HYDROXYLATION; MECHANISM; COMPLEX; DESYMMETRIZATION in [Sun, Shutao; Ma, Yingang; Liu, Ziqiang; Liu, Lei] Shandong Univ, Sch Pharmaceut Sci, Jinan 250100, Peoples R China; [Sun, Shutao; Liu, Lei] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China in 2021.0, Cited 69.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

A manganese-catalyzed oxidative kinetic resolution of cyclic benzylic ethers through asymmetric C(sp(3))-H oxidation is reported. The practical approach is applicable to a wide range of 1,3-dihydroisobenzofurans bearing diverse functional groups and substituent patterns at the alpha position with extremely efficient enantiodiscrimination. The generality of the strategy was further demonstrated by efficient oxidative kinetic resolution of another type of five-membered cyclic benzylic ether, 2,3-dihydrobenzofurans, and six-membered 6H-benzo[c]chromenes. Direct late-stage oxidative kinetic resolution of bioactive molecules that are otherwise difficult to access was further explored.

Category: esters-buliding-blocks. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Sun, ST; Ma, YG; Liu, ZQ; Liu, L or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Why do aromatic interactions matter of compound:6H-Benzo[c]chromen-6-one

Recommanded Product: 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Meyer, SM; Charlesworth-Seiler, EM; Patrow, JG; Kitzrow, JP; Gerlach, DL; Reinheimer, EW; Dahl, BJ or concate me.

Recommanded Product: 6H-Benzo[c]chromen-6-one. In 2020.0 TETRAHEDRON published article about ELECTRON-TRANSFER; HYDRIDE; IONS; DYES; AGGREGATION; REDUCTION; ROSAMINE; PROTON in [Meyer, Samantha M.; Charlesworth-Seiler, Eva M.; Patrow, Joel G.; Kitzrow, Jonathan P.; Gerlach, Deidra L.; Dahl, Bart J.] Univ Wisconsin, Dept Chem, Eau Claire, WI 54702 USA; [Reinheimer, Eric W.] Rigaku Amer Corp, 9009 New Trails Dr, The Woodlands, TX 77381 USA in 2020.0, Cited 40.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

This report describes the synthesis of five new colorful 6-aryldibenzo[b,d]pyrylium cation salts, a largely unexplored structural unit. These rare compounds are benzannulated structural derivatives of the well-known flavylium cations found widespread in natural pigments. These new dyes are directly compared to three previously synthesized 6-aryldibenzo[b,d]pyrylium cation salts as well as eight colorful isomeric 9-aryldibenzo[b,d]pyrylium cation, or 9-arylxanthylium, salts. The 9-arylxanthylium unit is commonly found in the biologically important rhodamine and rosamine dyes, yet six of the analogs presented in this study were either previously unreported or not isolated. The visual and spectroscopic properties of all 16 compounds were analyzed as a function of the structural differences between the compounds. All compounds displayed reversible halochromism in organic solution, displaying bright colors under acidic conditions and becoming colorless under basic conditions. (C) 2020 Elsevier Ltd. All rights reserved.

Recommanded Product: 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Meyer, SM; Charlesworth-Seiler, EM; Patrow, JG; Kitzrow, JP; Gerlach, DL; Reinheimer, EW; Dahl, BJ or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

What advice would you give a new faculty member or graduate student interested in a career C13H8O2

Name: 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Ravotti, R; Fellmann, O; Lardon, N; Fischer, LJ; Stamatiou, A; Worlitschek, J or concate me.

Name: 6H-Benzo[c]chromen-6-one. In 2019.0 MOLECULES published article about THERMAL-ENERGY STORAGE; ACID in [Ravotti, Rebecca; Fellmann, Oliver; Lardon, Nicolas; Fischer, Ludger J.; Stamatiou, Anastasia; Worlitschek, Joerg] Lucerne Univ Appl Sci & Arts, Competence Ctr Thermal Energy Storage TES, CH-6048 Horw, Switzerland; [Lardon, Nicolas] Max Planck Inst Med Res, D-69120 Heidelberg, Germany in 2019.0, Cited 25.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

In the presented work, five bio-based and bio-degradable cyclic esters, i.e. lactones, have been investigated as possible phase change materials for applications in latent heat storage systems. Commercial natural lactones such as epsilon-caprolactone and gamma-valerolactone were easily purchased through chemical suppliers, while 1,2-campholide, oxa-adamantanone and dibenzochromen-6-one were synthesized through Baeyer-Villiger oxidation. The compounds were characterized with respect to attenuated total reflectance spectroscopy and gas chromatography coupled with mass spectroscopy, in order to confirm their chemical structures and identity. Subsequently, thermogravimetric analysis and differential scanning calorimetry were used to measure the phase change temperatures, enthalpies of fusion, degradation temperatures, as well to estimate the degree of supercooling. The lactones showed a wide range of phase change temperatures from -40 degrees C to 290 degrees C, making them a high interest for both low and high temperature latent heat storage applications, given the lack of organic phase change materials covering phase change temperature ranges below 0 degrees C and above 80 degrees C. However, low enthalpies of fusion, high degrees of supercooling and thermal degradations at low temperatures were registered for all samples, rendering them unsuitable as phase change materials.

Name: 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Ravotti, R; Fellmann, O; Lardon, N; Fischer, LJ; Stamatiou, A; Worlitschek, J or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Search for chemical structures by a sketch :2005-10-9

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Vriza, A; Canaj, AB; Vismara, R; Cook, LJK; Manning, TD; Gaultois, MW; Wood, PA; Kurlin, V; Berry, N; Dyer, MS; Rosseinsky, MJ or concate me.. Product Details of 2005-10-9

Product Details of 2005-10-9. In 2021.0 CHEM SCI published article about CHARGE-TRANSFER; ORGANIC COCRYSTALS; MOLECULAR-COMPLEX; DESIGN; ANTHRACENE; PYRENE; WILL in [Vriza, Aikaterini; Canaj, Angelos B.; Vismara, Rebecca; Cook, Laurence J. Kershaw; Manning, Troy D.; Gaultois, Michael W.; Berry, Neil; Dyer, Matthew S.; Rosseinsky, Matthew J.] Univ Liverpool, Dept Chem, 51 Oxford St, Liverpool L7 3NY, Merseyside, England; [Vriza, Aikaterini; Canaj, Angelos B.; Vismara, Rebecca; Cook, Laurence J. Kershaw; Manning, Troy D.; Gaultois, Michael W.; Berry, Neil; Dyer, Matthew S.; Rosseinsky, Matthew J.] Univ Liverpool, Mat Innovat Factory, 51 Oxford St, Liverpool L7 3NY, Merseyside, England; [Vriza, Aikaterini; Gaultois, Michael W.; Dyer, Matthew S.; Rosseinsky, Matthew J.] Univ Liverpool, Leverhulme Res Ctr Funct Mat Design, Oxford St, Oxford, England; [Wood, Peter A.] Cambridge Crystallog Data Ctr, 12 Union Rd, Cambridge CB2 1EZ, England; [Kurlin, Vitaliy] Univ Liverpool, Dept Comp Sci, Mat Innovat Factory, Liverpool L69 3BX, Merseyside, England in 2021.0, Cited 81.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

The implementation of machine learning models has brought major changes in the decision-making process for materials design. One matter of concern for the data-driven approaches is the lack of negative data from unsuccessful synthetic attempts, which might generate inherently imbalanced datasets. We propose the application of the one-class classification methodology as an effective tool for tackling these limitations on the materials design problems. This is a concept of learning based only on a well-defined class without counter examples. An extensive study on the different one-class classification algorithms is performed until the most appropriate workflow is identified for guiding the discovery of emerging materials belonging to a relatively small class, that being the weakly bound polyaromatic hydrocarbon co-crystals. The two-step approach presented in this study first trains the model using all the known molecular combinations that form this class of co-crystals extracted from the Cambridge Structural Database (1722 molecular combinations), followed by scoring possible yet unknown pairs from the ZINC15 database (21 736 possible molecular combinations). Focusing on the highest-ranking pairs predicted to have higher probability of forming co-crystals, materials discovery can be accelerated by reducing the vast molecular space and directing the synthetic efforts of chemists. Further on, using interpretability techniques a more detailed understanding of the molecular properties causing co-crystallization is sought after. The applicability of the current methodology is demonstrated with the discovery of two novel co-crystals, namely pyrene-6H-benzo[c]chromen-6-one (1) and pyrene-9,10-dicyanoanthracene (2).

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Vriza, A; Canaj, AB; Vismara, R; Cook, LJK; Manning, TD; Gaultois, MW; Wood, PA; Kurlin, V; Berry, N; Dyer, MS; Rosseinsky, MJ or concate me.. Product Details of 2005-10-9

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

What about chemistry interests you the most C13H8O2

Category: esters-buliding-blocks. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Sun, ST; Ma, YG; Liu, ZQ; Liu, L or concate me.

An article Oxidative Kinetic Resolution of Cyclic Benzylic Ethers WOS:000585986100001 published article about C-H BONDS; RACEMIC SECONDARY ALCOHOLS; HYDROGEN-PEROXIDE; ASYMMETRIC EPOXIDATION; OXOCARBENIUM IONS; AEROBIC OXIDATION; HYDROXYLATION; MECHANISM; COMPLEX; DESYMMETRIZATION in [Sun, Shutao; Ma, Yingang; Liu, Ziqiang; Liu, Lei] Shandong Univ, Sch Pharmaceut Sci, Jinan 250100, Peoples R China; [Sun, Shutao; Liu, Lei] Shandong Univ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China in 2021.0, Cited 69.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9. Category: esters-buliding-blocks

A manganese-catalyzed oxidative kinetic resolution of cyclic benzylic ethers through asymmetric C(sp(3))-H oxidation is reported. The practical approach is applicable to a wide range of 1,3-dihydroisobenzofurans bearing diverse functional groups and substituent patterns at the alpha position with extremely efficient enantiodiscrimination. The generality of the strategy was further demonstrated by efficient oxidative kinetic resolution of another type of five-membered cyclic benzylic ether, 2,3-dihydrobenzofurans, and six-membered 6H-benzo[c]chromenes. Direct late-stage oxidative kinetic resolution of bioactive molecules that are otherwise difficult to access was further explored.

Category: esters-buliding-blocks. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Sun, ST; Ma, YG; Liu, ZQ; Liu, L or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Chemical Research in C13H8O2

Quality Control of 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Hanashima, M; Matsumura, T; Asaji, Y; Yoshimura, T; Matsuo, J or concate me.

Authors Hanashima, M; Matsumura, T; Asaji, Y; Yoshimura, T; Matsuo, J in PHARMACEUTICAL SOC JAPAN published article about TANDEM WESSELY OXIDATION; CYCLOADDITION; ALKALOIDS; ADDITIONS in [Hanashima, Mika; Matsumura, Toshiki; Asaji, Yuta; Yoshimura, Tomoyuki; Matsuo, Jun-ichi] Kanazawa Univ, Grad Sch Med Sci, Div Pharmaceut Sci, Kakuma Machi, Kanazawa, Ishikawa 9201192, Japan in 2020.0, Cited 40.0. Quality Control of 6H-Benzo[c]chromen-6-one. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9

Regioselectivity for intramolecular Diels-Alder (IMDA) reactions of 6-acetoxy-6-alkenylcyclohexa-2,4-dien-1-ones that were formed by oxidation of 2-alkenylphenols with lead tetraacetate in acetic acid were studied. Bridged regioselectivity was observed in the IMDA reactions of 6-acetoxy-6-alkenylcyclohexa-2,4-dien-1-ones having a dienophile part which could conjugate with an aromatic group. Bridged seven-and eight-membered rings and bicyclo[2.2.2]octane skeletons were constructed by the present IMDA reactions. Density functional theory (DFT) calculations suggested that conjugation of the dienophile with neighboring aromatic groups lowered the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap and preceded bridged [4 + 2] adducts.

Quality Control of 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Hanashima, M; Matsumura, T; Asaji, Y; Yoshimura, T; Matsuo, J or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

How did you first get involved in researching 2005-10-9

Recommanded Product: 2005-10-9. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Hanashima, M; Matsumura, T; Asaji, Y; Yoshimura, T; Matsuo, J or concate me.

Recently I am researching about TANDEM WESSELY OXIDATION; CYCLOADDITION; ALKALOIDS; ADDITIONS, Saw an article supported by the JSPS KAKENHIMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of ScienceGrants-in-Aid for Scientific Research (KAKENHI) [JP19K05473]; Kanazawa University SAKIGAKE project. Recommanded Product: 2005-10-9. Published in PHARMACEUTICAL SOC JAPAN in TOKYO ,Authors: Hanashima, M; Matsumura, T; Asaji, Y; Yoshimura, T; Matsuo, J. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one

Regioselectivity for intramolecular Diels-Alder (IMDA) reactions of 6-acetoxy-6-alkenylcyclohexa-2,4-dien-1-ones that were formed by oxidation of 2-alkenylphenols with lead tetraacetate in acetic acid were studied. Bridged regioselectivity was observed in the IMDA reactions of 6-acetoxy-6-alkenylcyclohexa-2,4-dien-1-ones having a dienophile part which could conjugate with an aromatic group. Bridged seven-and eight-membered rings and bicyclo[2.2.2]octane skeletons were constructed by the present IMDA reactions. Density functional theory (DFT) calculations suggested that conjugation of the dienophile with neighboring aromatic groups lowered the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap and preceded bridged [4 + 2] adducts.

Recommanded Product: 2005-10-9. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Hanashima, M; Matsumura, T; Asaji, Y; Yoshimura, T; Matsuo, J or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Chemical Properties and Facts of C13H8O2

Category: esters-buliding-blocks. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Wadekar, K; Aswale, S; Yatham, VR or concate me.

Wadekar, K; Aswale, S; Yatham, VR in [Wadekar, Ketan] CSIR IICT, Hyderabad, Telangana, India; [Wadekar, Ketan] Acad Sci & Innovat Res AcSIR, Ghaziabad, India; [Aswale, Suraj; Yatham, Veera Reddy] CSIR IICT, Dept Organ Synth & Proc Chem, Hyderabad 500007, Telangana, India published Cerium photocatalyzed dehydrogenative lactonization of 2-arylbenzoic acids in 2020.0, Cited 67.0. Category: esters-buliding-blocks. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

The first cerium photocatalyzed dehydrogenative lactonization of 2-arylbenzoic acids has been developed. This operationally simple protocol allows rapid access to synthetically useful coumarins on gram scale by employing CeCl3 as a photocatalyst and O-2 as a terminal oxidant. Overall, this delivers an economical and environmentally amiable entry to diversely substituted coumarins, important structural motifs in bioactive molecules.

Category: esters-buliding-blocks. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Wadekar, K; Aswale, S; Yatham, VR or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Extended knowledge of 2005-10-9

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Xia, SQ; Hu, KJ; Lei, CH; Jin, J or concate me.. Computed Properties of C13H8O2

An article Intramolecular Aromatic C-H Acyloxylation Enabled by Iron Photocatalysis WOS:000516667200032 published article about DEHYDROGENATIVE LACTONIZATION; PHOTOREDOX CATALYSIS; CARBOXYLIC-ACIDS; METAL-COMPLEXES; C(SP(2))-H; FUNCTIONALIZATION; DIBENZOPYRANONES; LACTONES; SYSTEM in [Xia, Siqi; Lei, Chuanhu] Shanghai Univ, Coll Sci, Ctr Supramol Chem & Catalysis, Shanghai 200444, Peoples R China; [Xia, Siqi; Lei, Chuanhu] Shanghai Univ, Coll Sci, Dept Chem, Shanghai 200444, Peoples R China; [Xia, Siqi; Hu, Kunjun; Jin, Jian] Chinese Acad Sci, Univ Chinese Acad Sci, Shanghai Inst Organ Chem, CAS Key Lab Synthet Chem Nat Subst,Ctr Excellence, Shanghai 20032, Peoples R China in 2020.0, Cited 73.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9. Computed Properties of C13H8O2

A mild and efficient protocol for the intramolecular aromatic C-H oxygenation of 2-biphenylcarboxylic acids has been achieved via iron photocatalysis. The 2-biphenylcarboxylic acids with a diverse array of substituents at both phenyl rings could furnish the oxygenation products in good to excellent yields. We speculate that the aryl carboxylate-iron(III) complexes should generate the aroyloxy radicals and iron(II) upon visible light irradiation.

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Xia, SQ; Hu, KJ; Lei, CH; Jin, J or concate me.. Computed Properties of C13H8O2

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics