Chemical Properties and Facts of 6H-Benzo[c]chromen-6-one

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Wang, JY; Peng, T; Zhang, XY; Xie, SL; Zheng, PM; Yao, K; Ke, YB; Wang, ZH; Jiang, HY or concate me.. Application In Synthesis of 6H-Benzo[c]chromen-6-one

Recently I am researching about BROAD-SPECIFICITY; MONOCLONAL-ANTIBODY; ORGANOPHOSPHORUS PESTICIDES; MONOMETHYL ETHER; HAPTEN DESIGN; IMMUNOASSAY; RECOGNITION; SELECTIVITY; OFLOXACIN; ELISA, Saw an article supported by the Ministry of Science and Technology of the People’s Republic of ChinaMinistry of Science and Technology, China [2017YFF0211003]; Sanming Project of Medicine in Shenzhen [SZSM201611068]. Published in WILEY in HOBOKEN ,Authors: Wang, JY; Peng, T; Zhang, XY; Xie, SL; Zheng, PM; Yao, K; Ke, YB; Wang, ZH; Jiang, HY. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one. Application In Synthesis of 6H-Benzo[c]chromen-6-one

The antigen-antibody interaction determines the sensitivity and specificity of competitive immunoassay for hapten detection. In this paper, the specificity of a monoclonal antibody against alternariol-like compounds was evaluated through indirect competitive ELISA. The results showed that the antibody had cross-reactivity with 33 compounds with the binding affinity (expressed by IC50) ranging from 9.4 ng/mL to 12.0 mu g/mL. All the 33 compounds contained a common moiety and similar substituents. To understand how this common moiety and substituents affected the recognition ability of the antibody, a three-dimensional quantitative structure-activity relationship (3D-QSAR) between the antibody and the 33 alternariol-like compounds was constructed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. The q(2) values of the CoMFA and CoMSIA models were 0.785 and 0.782, respectively, and the r(2) values were 0.911 and 0.988, respectively, indicating that the models had good predictive ability. The results of 3D-QSAR showed that the most important factor affecting antibody recognition was the hydrogen bond mainly formed by the hydroxyl group of alternariol, followed by the hydrophobic force mainly formed by the methyl group. This study provides a reference for the design of new hapten and the mechanisms for antibody recognition.

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Wang, JY; Peng, T; Zhang, XY; Xie, SL; Zheng, PM; Yao, K; Ke, YB; Wang, ZH; Jiang, HY or concate me.. Application In Synthesis of 6H-Benzo[c]chromen-6-one

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Discovery of 2005-10-9

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Luo, Z; Gao, ZH; Song, ZY; Han, YF; Ye, S or concate me.. Recommanded Product: 2005-10-9

Recently I am researching about 9-MESITYL-10-METHYLACRIDINIUM ION; OXYGENATION; CYCLIZATION; ACID; DIBENZOPYRANONES; BENZOPYRANONES; INSERTION; DRIVEN, Saw an article supported by the National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21425207, 21521002, 21702208]; Chinese Academy of SciencesChinese Academy of Sciences. Published in ROYAL SOC CHEMISTRY in CAMBRIDGE ,Authors: Luo, Z; Gao, ZH; Song, ZY; Han, YF; Ye, S. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one. Recommanded Product: 2005-10-9

A visible light mediated oxidative lactonization of 2-methyl-1,1′-biaryls was developed, giving benzocoumarins in good yields. The reaction features multiple C-H functionalization processes with oxygen as the final oxidant. The corresponding 2-aldehdyes, alcohols and carboxylic acids of the 1,1′-biaryls also worked well for the reaction.

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Luo, Z; Gao, ZH; Song, ZY; Han, YF; Ye, S or concate me.. Recommanded Product: 2005-10-9

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

What Kind of Chemistry Facts Are We Going to Learn About 6H-Benzo[c]chromen-6-one

Quality Control of 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Ravotti, R; Fellmann, O; Lardon, N; Fischer, LJ; Stamatiou, A; Worlitschek, J or concate me.

Recently I am researching about THERMAL-ENERGY STORAGE; ACID, Saw an article supported by the Swiss National Science Foundation (SNSF)Swiss National Science Foundation (SNSF) [PZENP2_173636]. Quality Control of 6H-Benzo[c]chromen-6-one. Published in MDPI in BASEL ,Authors: Ravotti, R; Fellmann, O; Lardon, N; Fischer, LJ; Stamatiou, A; Worlitschek, J. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one

In the presented work, five bio-based and bio-degradable cyclic esters, i.e. lactones, have been investigated as possible phase change materials for applications in latent heat storage systems. Commercial natural lactones such as epsilon-caprolactone and gamma-valerolactone were easily purchased through chemical suppliers, while 1,2-campholide, oxa-adamantanone and dibenzochromen-6-one were synthesized through Baeyer-Villiger oxidation. The compounds were characterized with respect to attenuated total reflectance spectroscopy and gas chromatography coupled with mass spectroscopy, in order to confirm their chemical structures and identity. Subsequently, thermogravimetric analysis and differential scanning calorimetry were used to measure the phase change temperatures, enthalpies of fusion, degradation temperatures, as well to estimate the degree of supercooling. The lactones showed a wide range of phase change temperatures from -40 degrees C to 290 degrees C, making them a high interest for both low and high temperature latent heat storage applications, given the lack of organic phase change materials covering phase change temperature ranges below 0 degrees C and above 80 degrees C. However, low enthalpies of fusion, high degrees of supercooling and thermal degradations at low temperatures were registered for all samples, rendering them unsuitable as phase change materials.

Quality Control of 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Ravotti, R; Fellmann, O; Lardon, N; Fischer, LJ; Stamatiou, A; Worlitschek, J or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

The Shocking Revelation of 2005-10-9

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Hauptmann, R; Petrosyan, A; Fennel, F; Cordero, MAA; Surkus, AE; Pospech, J or concate me.. Formula: C13H8O2

An article Pyrimidopteridine N-Oxide Organic Photoredox Catalysts: Characterization, Application and Non-Covalent Interaction in Solid State WOS:000462057300011 published article about ELECTRON-TRANSFER PROCESS; Z ISOMERIZATION; PHOTOOXIDATIVE DECARBOXYLATION; PHOTOCATALYTIC E; PI INTERACTIONS; ACTIVATION; OXIDATION; CLEAVAGE in [Hauptmann, Richy; Petrosyan, Andranik; Cordero, Miguel A. Argueello; Surkus, Annette-E; Pospech, Jola] Univ Rostock, Leibniz Inst Catalysis, Albert Einstein Str 29a, D-18059 Rostock, Germany; [Fennel, Franziska; Cordero, Miguel A. Argueello] Univ Rostock, Inst Phys, Dynam Mol Syst, Albert Einstein Str 23-24, D-18059 Rostock, Germany in 2019.0, Cited 33.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9. Formula: C13H8O2

Herein we report the photo- and electrochemical characterization of pyrimidopteridine N-oxide-based heterocycles. The potential of their application as organic photoredox catalysts is showcased in the photomediated contra-thermodynamic E -> Z isomerization of cinnamic acid derivatives and oxidative cyclization of 2-phenyl benzoic acid to benzocoumarin using molecular oxygen as a mild oxidant. Furthermore, unprecedented intermolecular non-covalent n-pi-hole interactions in solid state are discussed based on crystallographic and theoretical data.

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Hauptmann, R; Petrosyan, A; Fennel, F; Cordero, MAA; Surkus, AE; Pospech, J or concate me.. Formula: C13H8O2

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

The important role of 6H-Benzo[c]chromen-6-one

Computed Properties of C13H8O2. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Rumyantsev, AV; Pichugov, AV; Bushkov, NS; Aleshin, DY; Strelkova, TV; Lependina, OL; Zhizhko, PA; Zarubin, DN or concate me.

Computed Properties of C13H8O2. Authors Rumyantsev, AV; Pichugov, AV; Bushkov, NS; Aleshin, DY; Strelkova, TV; Lependina, OL; Zhizhko, PA; Zarubin, DN in ROYAL SOC CHEMISTRY published article about in [Rumyantsev, Andrey, V; Pichugov, Andrey, V; Bushkov, Nikolai S.; Aleshin, Dmitry Yu; Strelkova, Tatyana, V; Lependina, Olga L.; Zhizhko, Pavel A.; Zarubin, Dmitry N.] Russian Acad Sci, AN Nesmeyanov Inst Organoelement Cpds, Vavilov Str 28, Moscow 119991, Russia; [Rumyantsev, Andrey, V; Bushkov, Nikolai S.] Moscow MV Lomonosov State Univ, Dept Chem, Vorobevy Gory 1, Moscow 119991, Russia; [Pichugov, Andrey, V; Aleshin, Dmitry Yu] D Mendeleev Univ Chem Technol Russia, Higher Chem Coll, Miusskaya Sq 9, Moscow 125047, Russia in 2021.0, Cited 33.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9

We report the first examples of direct imidation of lactones giving the corresponding cyclic imidates via oxo/imido heterometathesis with N-sulfinylamines catalysed by a well-defined silica-supported Ti imido complex.

Computed Properties of C13H8O2. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Rumyantsev, AV; Pichugov, AV; Bushkov, NS; Aleshin, DY; Strelkova, TV; Lependina, OL; Zhizhko, PA; Zarubin, DN or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

What I Wish Everyone Knew About 6H-Benzo[c]chromen-6-one

COA of Formula: C13H8O2. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Wang, JY; Peng, T; Zhang, XY; Xie, SL; Zheng, PM; Yao, K; Ke, YB; Wang, ZH; Jiang, HY or concate me.

I found the field of Biochemistry & Molecular Biology; Biophysics very interesting. Saw the article Application of quantitative structure-activity relationship analysis on an antibody and alternariol-like compounds interaction study published in 2019.0. COA of Formula: C13H8O2, Reprint Addresses Jiang, HY (corresponding author), China Agr Univ, Coll Vet Med, 2 Yuanmingyuan Xilu, Beijing 100193, Peoples R China.. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one

The antigen-antibody interaction determines the sensitivity and specificity of competitive immunoassay for hapten detection. In this paper, the specificity of a monoclonal antibody against alternariol-like compounds was evaluated through indirect competitive ELISA. The results showed that the antibody had cross-reactivity with 33 compounds with the binding affinity (expressed by IC50) ranging from 9.4 ng/mL to 12.0 mu g/mL. All the 33 compounds contained a common moiety and similar substituents. To understand how this common moiety and substituents affected the recognition ability of the antibody, a three-dimensional quantitative structure-activity relationship (3D-QSAR) between the antibody and the 33 alternariol-like compounds was constructed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. The q(2) values of the CoMFA and CoMSIA models were 0.785 and 0.782, respectively, and the r(2) values were 0.911 and 0.988, respectively, indicating that the models had good predictive ability. The results of 3D-QSAR showed that the most important factor affecting antibody recognition was the hydrogen bond mainly formed by the hydroxyl group of alternariol, followed by the hydrophobic force mainly formed by the methyl group. This study provides a reference for the design of new hapten and the mechanisms for antibody recognition.

COA of Formula: C13H8O2. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Wang, JY; Peng, T; Zhang, XY; Xie, SL; Zheng, PM; Yao, K; Ke, YB; Wang, ZH; Jiang, HY or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

An update on the compound challenge: 2005-10-9

Name: 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Pan, C; Wang, LM; Han, JW or concate me.

Recently I am researching about C-F BOND; H DUAL ACTIVATION; CASCADE ANNULATION; CARBOXYLIC-ACIDS; ARYL MIGRATION; ARYLATION; ACCESS; DERIVATIVES; EXTENSION; NITRILES, Saw an article supported by the NSFC/ChinaNational Natural Science Foundation of China (NSFC) [21772039, 21421004]; Shanghai Municipal Science and Technology Major Project [2018SHZDZX03]; Programme of Introducing Talents of Discipline to UniversitiesMinistry of Education, China – 111 Project [B16017]; National Key Research and Development Program [2016YFA0200302]; Croucher Foundation (Hong Kong). Name: 6H-Benzo[c]chromen-6-one. Published in AMER CHEMICAL SOC in WASHINGTON ,Authors: Pan, C; Wang, LM; Han, JW. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one

By using 2-fluoro-substituted diaryliodonium salts, a novel benzocylization has been accomplished for the synthesis of 3,4-benzocoumarin derivatives via a cascade of ortho-arylation and defluorination in the presence of palladium catalysts. The reaction exhibits a broad compatibility of readily available aromatic acids with an excellent level of site-selectivity. Mechanistic investigations revealed a unique reactivity of carboxylic acid directed arylation by followed nucleophilic substitution of aromatic fluoride in the present system.

Name: 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Pan, C; Wang, LM; Han, JW or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

New learning discoveries about 6H-Benzo[c]chromen-6-one

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Vriza, A; Canaj, AB; Vismara, R; Cook, LJK; Manning, TD; Gaultois, MW; Wood, PA; Kurlin, V; Berry, N; Dyer, MS; Rosseinsky, MJ or concate me.. HPLC of Formula: C13H8O2

HPLC of Formula: C13H8O2. Recently I am researching about CHARGE-TRANSFER; ORGANIC COCRYSTALS; MOLECULAR-COMPLEX; DESIGN; ANTHRACENE; PYRENE; WILL, Saw an article supported by the Engineering and Physical Sciences Research Council (EPSRC)UK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/S026339/1]; EPSRCUK Research & Innovation (UKRI)Engineering & Physical Sciences Research Council (EPSRC) [EP/R018472/1]; Leverhulme TrustLeverhulme Trust; Leverhulme Research Centre for Functional Materials Design via the Leverhulme Research Centre for Functional Materials Design [RC-2015-036]; Cambridge Crystallographic Data Centre. Published in ROYAL SOC CHEMISTRY in CAMBRIDGE ,Authors: Vriza, A; Canaj, AB; Vismara, R; Cook, LJK; Manning, TD; Gaultois, MW; Wood, PA; Kurlin, V; Berry, N; Dyer, MS; Rosseinsky, MJ. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one

The implementation of machine learning models has brought major changes in the decision-making process for materials design. One matter of concern for the data-driven approaches is the lack of negative data from unsuccessful synthetic attempts, which might generate inherently imbalanced datasets. We propose the application of the one-class classification methodology as an effective tool for tackling these limitations on the materials design problems. This is a concept of learning based only on a well-defined class without counter examples. An extensive study on the different one-class classification algorithms is performed until the most appropriate workflow is identified for guiding the discovery of emerging materials belonging to a relatively small class, that being the weakly bound polyaromatic hydrocarbon co-crystals. The two-step approach presented in this study first trains the model using all the known molecular combinations that form this class of co-crystals extracted from the Cambridge Structural Database (1722 molecular combinations), followed by scoring possible yet unknown pairs from the ZINC15 database (21 736 possible molecular combinations). Focusing on the highest-ranking pairs predicted to have higher probability of forming co-crystals, materials discovery can be accelerated by reducing the vast molecular space and directing the synthetic efforts of chemists. Further on, using interpretability techniques a more detailed understanding of the molecular properties causing co-crystallization is sought after. The applicability of the current methodology is demonstrated with the discovery of two novel co-crystals, namely pyrene-6H-benzo[c]chromen-6-one (1) and pyrene-9,10-dicyanoanthracene (2).

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Vriza, A; Canaj, AB; Vismara, R; Cook, LJK; Manning, TD; Gaultois, MW; Wood, PA; Kurlin, V; Berry, N; Dyer, MS; Rosseinsky, MJ or concate me.. HPLC of Formula: C13H8O2

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Discover the magic of the 6H-Benzo[c]chromen-6-one

Recommanded Product: 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Santi, M; Seitz, J; Cicala, R; Hardwick, T; Ahmed, N; Wirth, T or concate me.

Recently I am researching about ACID; CHEMISTRY; OXIDATION; STRATEGY; SYSTEM, Saw an article supported by the School of Chemistry, Cardiff University; EUEuropean Commission; Welsh Government [663830]; International Collaborative Research Program of the Institute for Chemical Research, Kyoto University [2019-67]. Recommanded Product: 6H-Benzo[c]chromen-6-one. Published in WILEY-V C H VERLAG GMBH in WEINHEIM ,Authors: Santi, M; Seitz, J; Cicala, R; Hardwick, T; Ahmed, N; Wirth, T. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one

Amino acid derivatives undergo non-Kolbe electrolysis to afford enantiomerically enriched alpha-alkoxyamino derivatives through intermediate chiral carbenium ions. The products contain N,O-acetals which are important structural motifs found in bioactive natural products. The reaction is performed in a continuous flow electrochemical reactor coupled to a 2D-HPLC for immediate online analysis. This allowed a fast screening of temperature, electrode material, current, flow-rate and concentration in a DoE approach. The combination with online HPLC demonstrates that also stereoselective reactions can benefit from a hugely accelerated optimisation by combining flow electrochemistry with multidimensional analysis.

Recommanded Product: 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Santi, M; Seitz, J; Cicala, R; Hardwick, T; Ahmed, N; Wirth, T or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Extracurricular laboratory: Synthetic route of C13H8O2

HPLC of Formula: C13H8O2. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Chen, XY; Zhou, XK; Wang, JC; Dong, GB or concate me.

Recently I am researching about TRANSITION-METAL-COMPLEXES; KETONE ALPHA-ALKYLATION; ASYMMETRIC HYDROGENATION; BORONIC ESTERS; SIMPLE OLEFINS; VINYL ETHERS; RHODIUM; HYDROARYLATION; DIPHOSPHINES; HYDROFORMYLATION, Saw an article supported by the University of ChicagoUniversity of Chicago; NSFNational Science Foundation (NSF) [CHE-1855556]; Dalian Institute of Chemical Physics international talent training project. Published in AMER CHEMICAL SOC in WASHINGTON ,Authors: Chen, XY; Zhou, XK; Wang, JC; Dong, GB. The CAS is 2005-10-9. Through research, I have a further understanding and discovery of 6H-Benzo[c]chromen-6-one. HPLC of Formula: C13H8O2

In contrast to the plethora of large-bite-angle bisphosphine ligands available to transition-metal catalysis, the development of small-bite-angle bisphosphine ligands has suffered from the limited structural variations accessible on their single-atom-containing backbones. Herein, we report the design and applications of a discrete very small bite-angle bisphosphine ligand, namely, FMPhos. Featuring a fluorene-methylene unit appended on the single-carbon linker, the ligand harbors an unusually rigid backbone that presumably stabilizes its complexation with transition metals during catalysis. Compared with the known dppm ligand, it exhibited superior reactivity and regioselectivity in a number of alkene hydrofunctionalization reactions, catalyzed by iridium and rhodium.

HPLC of Formula: C13H8O2. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Chen, XY; Zhou, XK; Wang, JC; Dong, GB or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics