Ju, Yan-lun’s team published research in Scientia Horticulturae (Amsterdam, Netherlands) in 2022-06-01 | CAS: 106-32-1

Scientia Horticulturae (Amsterdam, Netherlands) published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, COA of Formula: C10H20O2.

Ju, Yan-lun published the artcileTargeted metabolomic and transcript level analysis reveals the effects of exogenous strigolactone and methyl jasmonate on grape quality, COA of Formula: C10H20O2, the main research area is Vitis fruit quality strigolactone methyl jasmonate targeted metabolomics.

The aim of this work was to gain insight on the effects of exogenous strigolactone (SL) and Me jasmonate (MeJA) on grape quality. ‘Cabernet Sauvignon’ grapes were used as materials. High-performance liquid chromatog. (HPLC) and gas chromatog. mass spectrometry (GC-MS) were used for targeted metabolomic analyzed. Real-time quant. PCR (qRT-PCR) was used for the genes expressions measurement. As results, GR24 (SL analog) and MeJA treatments, especially GR24+MeJA co-treatment, promoted the ripening and coloration of grapes and induced the accumulation of anthocyanins and the expression of anthocyanin-related genes including VvUFGT, VvCHS, VvC4H and VvF3’H. Both the GR24 or MeJA treatment alone or the GR24+MeJA co-treatment significantly increased the contents of total soluble sugar (TSS) and organic acids in grape berries, except for citric acid. GR24 and MeJA treatments, especially GR24+MeJA co-treatment, enhanced the accumulation of volatile compounds Moreover, GR24+MeJA co-treatment significantly increased the contents of C6 volatiles, derived from fatty acids by inducing the expression of VvLOXA, VvLOXB, VvLOXC, VvLOXD, VvHPL1, and VvHPL2. Overall, SL and MeJA applications, especially GR24+MeJA co-treatment may be useful for the quality improvement of red wine grapes.

Scientia Horticulturae (Amsterdam, Netherlands) published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, COA of Formula: C10H20O2.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Yao, Heng’s team published research in Food Research International in 2021-05-31 | CAS: 106-32-1

Food Research International published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Application of Ethyl octanoate.

Yao, Heng published the artcileEvolution of volatile profile and aroma potential of table grape Hutai-8 during berry ripening, Application of Ethyl octanoate, the main research area is Vitis ripening aroma volatile profile; Aroma compounds; Hutai Number8; Maturation process; Odor activity values; Vitis.

Hutai-8 (Vitis vinifera x Vitis labrusca) is a table grape widely cultivated in China. In order to determine the changes in volatile profile and aroma potential during berry ripening, a total of 84 free and 73 bound aroma compounds were identified and quantified using headspace solid-phase microextraction coupled with gas chromatog.-mass spectrometry (HS-SPME-GC-MS). Aldehydes and esters were found to be the main volatile compounds in Hutai-8. They accumulated up to 70 days after flowering (DAF) and then decreased. Bound esters and alcs. were prominent. The concentration of bound esters in Hutai-8 at DAF80 was 714.90μg/L. β-Damascenone, hexanal, (E)-2-hexenal, (E,Z)-2,6-nonadienal, (E)-2-nonenal, and Et octanoate significantly contributed to the volatile profile of Hutai-8. The odor activity value (OAV) of hexanal was the highest at DAF80, reaching 351.51. β-Damascenone mainly appeared midway through the maturation process, reaching a concentration of 12.79μg/L. The majority of free components reached a maximum in DAF70, while the bound components continuously accumulated throughout the mature period. These results suggest that in addition to being a table grape, Hutai-8 has potential for brewing and other processing.

Food Research International published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Application of Ethyl octanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Huang, Zi-Rui’s team published research in Food Research International in 2019-07-31 | CAS: 106-32-1

Food Research International published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Recommanded Product: Ethyl octanoate.

Huang, Zi-Rui published the artcileMicrobial communities and volatile metabolites in different traditional fermentation starters used for Hong Qu glutinous rice wine, Recommanded Product: Ethyl octanoate, the main research area is Hong Qu glutinous rice wine microbial community volatile metabolite; High-throughput sequencing; Hong Qu glutinous rice wine; Microbial community; Traditional fermentation starters; Volatile metabolites.

Hong Qu glutinous rice wine (HQGRW), as one of the most typical representatives of Chinese rice wine, is generally brewed from glutinous rice by adding two traditional wine fermentation starters-Hong Qu (HQ) and Bai Qu (BQ). The objective of this study was to determine the microbial communities and volatile metabolites of different traditional fermentation starters for HQGRW, and elucidate the potential correlation between microbiota and volatile metabolites. Both heatmap and principal component anal. (PCA) revealed the significant variances in volatile profiles among different wine starters. Microbiol. anal. based on high-throughput sequencing (HTS) technol. demonstrated that both of bacterial and fungal communities varied significantly in different starters. HQ was dominated mainly by bacteria of Bacillus ginsengihumi (20.17%), Pantoea sp. (10.39%), Elizabethkingia sp. (5.52%), Streptococcus sp. (5.03%) Brevundimonas sp. (3.03%), Rickettsia prowazekii (2.94%), Thermus thermophilus (2.54%), Bacillus amyloliquefaciens (1.48%), Bacillus aryabhattai (1.42%); fungi of Monascus purpureus (39.7%), Aspergillus niger (27.35%), Xeromyces bisporus (8.39%), Aspergillus penicillioides (6.89%), Aspergillus flavus (2.33%) and Pichia farinose (0.79%). By contrast, BQ contained much higher proportions of bacteria of Lactococcus lactis (10.45%), Lactobacillus brevis (9.99%), Pediococcus pentosaceus (8.29%), Weissella paramesenteroides (6.69%), Lactobacillus fermentum (4.83%), Gluconobacter thailandicus (3.93%), Lactobacillus alimentarius (3.59%), fungi of Rhizopus arrhizus (31.47%), Saccharomycopsis fibuligera (27.86%), Aspergillus niger (20.81%), Issatchenkia orientalis (3.79%), Saccharomycopsis malanga (3.15%), Clavispora lusitaniae (2.29%), Candida tropicalis (1.47%), Saccharomyces cerevisiae (1.11%) and Rhizopus microsporus (0.57%). Furthermore, core functional microbiota that might contribute to volatile flavor development was explored through Spearman’s correlation-based network anal. Lactobacillus brevis, Lactobacillus alimentarius, Lactobacillus plantarum and Aspergillus niger were found to be strongly associated with acid compounds (FDR adjusted P < 0.01), while Pichia sp., Candida sp., Monascus purpureus, Lactobacillus brevis and Lactobacillus alimentarius were pos. correlated with concentrations of aromatic esters associated with fruity and floral notes (FDR adjusted P < 0.01), implying that these microorganisms might make significant contributions to the flavor of rice wine. These findings demonstrated that the aromatic quality of HQGRW may be critically influenced by the microbiota in traditional fermentation starters. To conclude, this study would contribute to the development of novel defined starter cultures for improving the aromatic quality of HQGRW. Food Research International published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Recommanded Product: Ethyl octanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Belleggia, Luca’s team published research in Food Research International in 2020-10-31 | CAS: 106-32-1

Food Research International published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Product Details of C10H20O2.

Belleggia, Luca published the artcilePortuguese cacholeira blood sausage: A first taste of its microbiota and volatile organic compounds, Product Details of C10H20O2, the main research area is Portuguese cacholeira blood sausage volatile organic compound microbiota; Debaryomyces hansenii; Lactobacillus sakei; Mycobiota; Starmerella apicola; Volatilome.

Among typical Portuguese sausages, the cacholeira blood sausage undoubtedly represents one of the most popular preparations To the authors’ knowledge, a lack of information on both the microbiota and the volatile organic compounds (VOCs) of this blood-containing sausage emerges from the available scientific literature. This study represents the first characterization of physico-chem., microbiol. and volatile traits of Portuguese cacholeira blood sausage. To this end, ready-to-eat cacholeira blood sausages were collected from two production batches manufactured in summer (batch 1) and autumn (batch 2). Viable counts showed active microbial communities mainly composed by lactic acid bacteria, coagulase neg. cocci, enterococci and eumycetes. The metataxonomic approach showed a simple bacterial composition, which was dominated by Lactobacillus sakei in both the analyzed batches (1 and 2) considered. Carnobacterium, Enterococcus, Kluyvera, Lactococcus and Serratia were found as minor genera. The mycobiota varied according to the production season. Batch 1 was dominated by Starmerella apicola, Debaryomyces hansenii and Candida tropicalis, whereas batch 2 was dominated by D. hansenii. Moreover, Aspergillus spp., Kurtzmaniella zeylanoides, Saccharomyces cerevisiae, Kurtzmaniella santamariae, Brettanomyces bruxellensis and Pichia kluyveri were detected in both the batches as minority species. Seventy-two volatile compounds were identified, including esters, phenols, terpenoids, acids, alcs., ketones, aldehydes, lactones, furans, sulfur and nitrogen compounds Significant differences were seen in the amount of some compounds, as a feasible consequence of differences in the raw materials, artisan production and seasonality.

Food Research International published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Product Details of C10H20O2.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Lee, Sang Mi’s team published research in Journal of Food Science in 2019 | CAS: 106-32-1

Journal of Food Science published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Application of Ethyl octanoate.

Lee, Sang Mi published the artcileDetermination of Key Volatile Compounds Related to Long-Term Fermentation of Soy Sauce, Application of Ethyl octanoate, the main research area is soy sauce volatile compound long term fermentation; long-term fermentation; solid phase microextraction; soy sauce; stir bar sorptive extraction; volatile compounds.

The changes of volatile compounds in soy sauce during long-term fermentation (12 mo) were investigated using solid-phase microextraction (SPME) and stir bar sorptive extraction (SBSE). A total of 144 and 129 compounds were identified in soy sauce with long-term fermentation by SPME and SBSE, resp. The contents of most compounds, such as acids, aldehydes, benzene and benzene derivatives, esters, lactones, pyrazines, pyrones, and pyrroles, showed a tendency to increase, whereas those of alcs. and ketones decreased according to long-term fermentation The initial fermentation stages were mainly associated with some alcs., ketones, and lactones, whereas the later stages were strongly associated with most esters, some phenols, benzene and benzene derivatives, and pyrroles. Moreover, the key volatile compounds associated with long-term fermentation in soy sauce samples were Et 3-methylbutanoate (Et isovalerate), Et pentanoate (Et valerate), 1-octen-3-yl acetate, 3-(methylthio)-1-propanol (methionol), Et benzoate, Et 2-phenylacetate, 1-(1H-pyrrol-2-yl)ethanone (2-acetylpyrrole), and 5-pentyl-2-oxolanone (γ-nonalactone). Practical Application : This study investigated changes of volatile compounds in soy sauce during long-term fermentation (12 mo) using solid-phase microextraction and stir bar sorptive extraction These results may help to predict th e effective contributors related to long-term fermentation of soy sauce and improve the quality of soy sauce during long-term fermentation

Journal of Food Science published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Application of Ethyl octanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Zhang, Shurong’s team published research in LWT–Food Science and Technology in 2022-11-01 | CAS: 106-32-1

LWT–Food Science and Technology published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Recommanded Product: Ethyl octanoate.

Zhang, Shurong published the artcileImpact of co-culture of Lactobacillus plantarum and Oenococcus oeni at different ratios on malolactic fermentation, volatile and sensory characteristics of mulberry wine, Recommanded Product: Ethyl octanoate, the main research area is Lactobacillus plantarum Oenococcus oeni malolactic fermentation mulberry wine.

Mixed malolactic fermentation conducted by different starters are supposed to bring changes to wine properties. In this work, the combination of two classic MLF strains (L. plantarum or O. oeni, with different blend ratio) was investigated for the making of mulberry wines, with special emphasis on their performance during MLF and their interactive influence on the wine′s volatile and sensory property. The bacterial diversity during fermentation was evaluated by a next-generation sequencing method, and L. plantarum was found dominating over other genera most of the fermentation period. The volatile compounds were determined by HS-GC-IMS, and different volatile profiles were acquired as a result of different bacterial blend ratio. As for sensory evaluation, all mixed MLFs resulted in better sensory properties than single MLF, and LO41 (the inoculum of L. plantarum: O. oeni = 4:1) gained the highest score for global aroma, based on its reinforcement on ′fruity′ and reduction of ′pungent′ odors in wine. Furthermore, PLS was used to build the relationship between various volatiles and wine attributes, and further to explain the sensory data. Overall, our study provides an alternative strategy of combined MLF to improve the sensory property of mulberry wines.

LWT–Food Science and Technology published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Recommanded Product: Ethyl octanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Luo, Manli’s team published research in Food Chemistry in 2021-01-15 | CAS: 106-32-1

Food Chemistry published new progress about Esters Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Application of Ethyl octanoate.

Luo, Manli published the artcileInsights into profiling of volatile ester and LOX-pathway related gene families accompanying post-harvest ripening of Nanguo pears, Application of Ethyl octanoate, the main research area is volatile ester LOX signaling ripening Nanguo pear; LOX pathway; Post-harvest ripening; Volatile ester; ‘Nanguo’ pear.

Nanguo pear is particularly renowned for its fragrance. Esters are the main components of its aroma, which are synthesized primarily by the LOX pathway. We identified the main volatile esters and critical gene family members involved in the LOX pathway by monitoring their variation accompanying post-harvest ripening and examining their roles through principal component anal. (PCA), partial least-square regression (PLSR), and correlation anal. In pears ripening to the optimum taste period (OTP), components and contents of volatile esters reached a peak, of which Et butanoate, Et hexanoate, and hexyl acetate were most prominent. Linoleic acid and linolenic acid contents rose greatly until OTP and then declined; the activities of LOX, alc. dehydrogenase (ADH), and alc. acyltransferase (AAT) increased progressively until the OTP. Among the genes involved in LOX-pathway, the expressions of PuLOX3, PuADH3, and PuAAT contributed most to changes of total ester and main esters in Nanguo pears.

Food Chemistry published new progress about Esters Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Application of Ethyl octanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Niu, Yunwei’s team published research in Molecules in 2020 | CAS: 106-32-1

Molecules published new progress about Esters Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Recommanded Product: Ethyl octanoate.

Niu, Yunwei published the artcileCharacterization of odor-active volatiles and odor contribution based on binary interaction effects in mango and vodka cocktail, Recommanded Product: Ethyl octanoate, the main research area is vodka cocktail mango limonene betacaryophyllene terpinolene 3carene odor; perceptual interaction; synergistic effect; volatile compounds.

Thirty-six volatile compounds, composed of 18 esters, 10 terpenes, and 8 others, were detected by headspace-solid phase microextraction (HS-SPME) equipped with gas chromatog.-mass spectrometry (GC-MS) in mango and vodka cocktail. Moreover, these compounds were detected by olfactometry using aroma intensities. Comparing these compounds revealed that the aroma intensities (AIs) of limonene, 3-carene, myrcene, β-caryophyllene, and citronellyl propanoate were higher than others (AIs ≥ 4). In this context, limonene was selected as the reference compound on the basis of the strongest component model. The aim of this study was to determine the perceptual interaction between limonene and 3-carene, myrcene, β-caryophyllene, citronellyl propanoate, resp., in a binary mixture In addition, feller’s addition model revealed that limonene presented an addition effect when combined with 3-carene, myrcene, β-caryophyllene, and citronellyl propanoate. It could be stated that these compounds played an important role in the aroma of mango and vodka cocktail. The results demonstrated that mol. structure and the ratio between compounds affected the synergistic effect, and compounds with similar structure and aroma were more prone to undergo addition and synergy.

Molecules published new progress about Esters Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Recommanded Product: Ethyl octanoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Yan, Jing’s team published research in Molecules in 2020 | CAS: 106-32-1

Molecules published new progress about Esters Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Quality Control of 106-32-1.

Yan, Jing published the artcileFrom extra virgin olive oil to refined products: intensity and balance shifts of the volatile compounds versus odor, Quality Control of 106-32-1, the main research area is extra virgin olive oil volatile organic odor compound; VOCs proportion; extra virgin olive oil; odor quality; processing grades; quantitation.

To explore relationships between the volatile organic compounds (VOCs) of different grades of olive oils (OOs) (extra virgin olive oil (EVOO), refined olive oil (ROO), and pomace olive oil (POO)) and odor quality, VOCs were measured in the headspace of the oils by proton transfer reaction quadrupole ion guide time-of-flight mass spectrometry. The concentrations of most VOCs differed significantly between the grades (EVOO>ROO>POO), whereas the abundance of m/z 47.012 (formic acid), m/z 49.016 (fragments), m/z 49.027 (fragments), and m/z 115.111 (heptanal/heptanone) increased in that order. Although the refined oils had considerably lower VOC abundance, the extent of the decline varied with the VOCs. This results in differences in VOCs proportions. The high VOC abundance in the EVOO headspace in comparison to ROO and POO results in a richer and more complex odor. The identified C5-C6 compounds are expected to contribute mainly to the green odor notes, while the identified C1-C4 and C7-C15 are mainly responsible for odor defects of OOs. Current results reveal that processing strongly affects both the quant. and relative abundance of the VOCs and, therefore, the odor quality of the various grades of OOs.

Molecules published new progress about Esters Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Quality Control of 106-32-1.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Munoz-Gonzalez, Carolina’s team published research in Food Research International in 2020-09-30 | CAS: 106-32-1

Food Research International published new progress about Esters Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Synthetic Route of 106-32-1.

Munoz-Gonzalez, Carolina published the artcileOral persistence of esters is affected by wine matrix composition, Synthetic Route of 106-32-1, the main research area is ester wine matrix composition oral persistence; Ethanol; In vivo aroma release; Oral ester persistence; Oral retention; Polyphenols; Wine matrix.

The present work evaluated for the first time the influence of wine matrix composition on oral ester persistence. To do that, the in mouth behavior (oral retention and persistence) of six esters was followed in nine individuals after they rinsed their mouths with four rose wines presenting two levels (low and moderate) of ethanol (0.5% or 10% volume/volume) and polyphenols (402 U+00B1 10 or 661 U+00B1 33 mg gallic acid/L). Overall, polyphenols and specially, ethanol, affected the oral retention of esters and their subsequent oral persistence, in an individual, compound and concentration dependent manner. The wine with moderate ethanol and low polyphenol content and the wine with low ethanol and moderate polyphenol content presented an increased oral ester persistence respect to the control wine (low ethanol/polyphenol content). However, the wine with moderate ethanol/polyphenol content showed most likely a lower oral ester persistence compared to the rest of the wines. Thus, an interaction between ethanol and polyphenols at specific concentrations could reduce oral ester persistence, and likely the fruity character of wines. The information generated in this research can be used by winemakers to understand how different winemaking techniques, which might alter wine ethanol and polyphenol content, may also affect wine aroma quality.

Food Research International published new progress about Esters Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 106-32-1 belongs to class esters-buliding-blocks, name is Ethyl octanoate, and the molecular formula is C10H20O2, Synthetic Route of 106-32-1.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics