Zhang, Hailong published the artcileStructure-reactivity study of model and Biodiesel soot in model DPF regeneration conditions, Application In Synthesis of 110-42-9, the main research area is biodiesel soot catalytic oxidation diesel engine particulate filter.
The aim of the present work is to investigate and compare the non-catalytic and catalytic reactivities of real and model soot samples through temperature-programmed oxidation (TPO). Such reactivity was furthermore correlated with soot structural properties, determined by laser granulometry, XRD, Raman and HRTEM. Biodiesel soot samples were obtained through the combustion of different fuels in a real engine, whereas model soot samples were produced in a laminar burner. TPO evidenced that the soot generated with 100% Biodiesel (Me ester) was more reactive than real soot generated with 7% Biodiesel (7% Me ester). The model soot from the diesel surrogate (Aref) containing 7% oxygenate additive (C11H22O2) exhibited higher reactivity than the model soot containing 30% additive, whereas a carbon black (Degussa Printex U) showed the poorest reactivity of this series. The presence of NO2 promoted the non-catalytic oxidation of real soot. In the presence of the MnOx-CeO2 catalyst, soot reactivity depended both on reactant gas composition and on soot-catalyst contact.
Fuel published new progress about Aggregates. 110-42-9 belongs to class esters-buliding-blocks, name is Methyl decanoate, and the molecular formula is C11H22O2, Application In Synthesis of 110-42-9.
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics