Wakayama, Hideki et al. published their research in Industrial & Engineering Chemistry Research in 2019 | CAS: 112-14-1

Octyl acetate (cas: 112-14-1) belongs to esters. Esters typically have a pleasant smell; those of low molecular weight are commonly used as fragrances and are found in essential oils and pheromones. Because of their lack of hydrogen-bond-donating ability, esters do not self-associate. Consequently, esters are more volatile than carboxylic acids of similar molecular weight.Application In Synthesis of Octyl acetate

Method for Predicting Odor Intensity of Perfumery Raw Materials Using Dose-Response Curve Database was written by Wakayama, Hideki;Sakasai, Mitsuyoshi;Yoshikawa, Keiichi;Inoue, Michiaki. And the article was included in Industrial & Engineering Chemistry Research in 2019.Application In Synthesis of Octyl acetate The following contents are mentioned in the article:

The main purpose of this study is to facilitate fragrance development on the basis of scientific knowledge. To this end, data on 314 perfumery raw materials (PRMs) showing the relationship between PRM odor intensity and gas concentration were obtained, and a calculation model for the data was then developed with the following features: (1) maximum PRM coverage, (2) calculating values implying odor intensity from only arbitrary gas concentration, and (3) estimating odor intensity from the calculated values directly and easily. To verify the prediction accuracy of this model, the predicted odor intensity was compared with the evaluated value for both single component and a mixture, and the same degree of root mean square error (RMSE) was confirmed. RMSE in the single component was 6.22 while that in the mixture was 6.69. Thus, the odor intensity of a PRM or mixture can be predicted from arbitrary gas concentrations This study involved multiple reactions and reactants, such as Octyl acetate (cas: 112-14-1Application In Synthesis of Octyl acetate).

Octyl acetate (cas: 112-14-1) belongs to esters. Esters typically have a pleasant smell; those of low molecular weight are commonly used as fragrances and are found in essential oils and pheromones. Because of their lack of hydrogen-bond-donating ability, esters do not self-associate. Consequently, esters are more volatile than carboxylic acids of similar molecular weight.Application In Synthesis of Octyl acetate

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics