Glycosylation of Tetrabromobisphenol A in Pumpkin was written by Hou, Xingwang;Yu, Miao;Liu, Aifeng;Wang, Xiaoyun;Li, Yanlin;Liu, Jiyan;Schnoor, Jerald L.;Jiang, Guibin. And the article was included in Environmental Science & Technology in 2019.Quality Control of (2S,3R,4S,5R,6R)-6-(Acetoxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate The following contents are mentioned in the article:
Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant (BFR), and it bioaccumulates throughout the food chains. Its fate in the first trophic level, plants, is of special interest. In this study, a four-day hydroponic exposure of TBBPA at a concentration of 1μmol L-1 to pumpkin seedlings was conducted. A nontarget screening method for hydrophilic bromine-containing metabolites was modified, based on both typical isotope patterns of bromine and mass defect, and used to process mass spectra data. A total of 20 glycosylation and malonyl glycosylation metabolites were found for TBBPA in the pumpkin plants. Representative glycosyl TBBPA reference standards were synthesized to evaluate the contribution of this glycosylation process. Approx. 86% of parent TBBPA was metabolized to form those 20 glycosyl TBBPAs, showing that glycosylation was the most dominant metabolism pathway for TBBPA in pumpkin at the tested exposure concentration This study involved multiple reactions and reactants, such as (2S,3R,4S,5R,6R)-6-(Acetoxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (cas: 604-69-3Quality Control of (2S,3R,4S,5R,6R)-6-(Acetoxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate).
(2S,3R,4S,5R,6R)-6-(Acetoxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (cas: 604-69-3) belongs to esters. Esters are widespread in nature and are widely used in industry. In nature, fats are in general triesters derived from glycerol and fatty acids. Esters are responsible for the aroma of many fruits, including apples, durians, pears, bananas, pineapples, and strawberries. Because of their lack of hydrogen-bond-donating ability, esters do not self-associate. Consequently, esters are more volatile than carboxylic acids of similar molecular weight.Quality Control of (2S,3R,4S,5R,6R)-6-(Acetoxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics