In 2019,Journal of Insect Physiology included an article by Wen, Ming; Li, Ertao; Chen, Qi; Kang, Hui; Zhang, Shuai; Li, Kebin; Wang, Yinliang; Jiao, Yin; Ren, Bingzhong. Related Products of 119-36-8. The article was titled 《A herbivore-induced plant volatile of the host plant acts as a collective foraging signal to the larvae of the meadow moth, Loxostege sticticalis (Lepidoptera: Pyralidae)》. The information in the text is summarized as follows:
The meadow moth Loxostege sticticalis is a serious agricultural pest that feeds on the leaves of many economic crops, such as sugar beet, soybean, sunflower, and potato. In addition to the rapid migration of adult moths, the collective foraging behavior of the larvae is also thought to be involved in the search for new food sources and substantially contributes to the expansion of the infested area. However, whether and how the chem. signals take part in this process remains unknown. In this study, two larva-specific expressed odorants, LstiOR5 and LstiOR6, were successfully cloned and deophanized. A heterologous study on Xenopus laevis oocytes showed that several host plant volatiles could evoke LstiOR responses in a dose-dependent manner. One herbivore-induced plant volatile (HIPV) of soybean leaves, Me salicylate (MeSA), exerted attractive effects on the L. sticticalis larvae at all tested concentrations Further foraging choice assays showed that the L. sticticalis larvae preferred foraged soybean leaves over unforaged leaves. When MeSA was artificially added to unforaged leaves, the unforaged leaves were preferred over the foraged leaves. In addition, GC-MS anal. demonstrated that MeSA was induced by the foraging behavior of the larvae and acted as a collective food signal in L. sticticalis. Moreover, in situ hybridization showed that LstiOR5 was highly expressed in larval antenna neurons. When LstiOR5 was silenced, both the electrophysiol. response of the antenna to MeSA and the preference for foraged leaves were significantly decreased, suggesting that LstiOR5 is involved in the collective foraging behavior of L. sticticalis. Our results clarified the chem. signals that trigger the collective foraging behavior of L. sticticalis and provided more evidence for the mol. mechanism underlying the expansions of their infested areas at a peripheral olfactory sensing level. These findings could facilitate the development of potential control strategies for controlling this pest and provide a potential gene target that correlates with the collective foraging behavior of L. sticticalis, which might lead to better pest management. In the experiment, the researchers used many compounds, for example, Methyl Salicylate(cas: 119-36-8Related Products of 119-36-8)
Methyl Salicylate(cas: 119-36-8) has been used: as a component of clarifying solution for treating Mongolian gerbil cochlea intact for immunofluorescence analysis, as a plant elicitor to test its effect on reducing the whitefly population from tomato plants.Related Products of 119-36-8
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics