Li, Dan; Zhu, Changyan; Zhang, Min; Wang, Ying; Kang, Ziye; Liu, Yulong; Liu, Jun; Liu, Jia; Xie, Haiming published the artcile< 1,2-dimethyl-3-propylimidazolium iodide as a multiple-functional redox mediator for Li-O2 batteries: In situ generation of a ""self-defensed"" SEI layer on Li anode>, Related Products of 112-63-0, the main research area is dimethyl propylimidazolium iodide redox mediator lithium oxygen battery anode.
How to develop a homogeneous redox mediator (RM) towards both ORR and OER and how to prevent the shuttle effect are two main issues for Li-O2 batteries thus far. Here, we firstly report 1,2-dimethyl-3-propylimidazolium iodide (DMPII), which serves multiple functions as a RM for discharge capacity promotion, a RM for charge potential reduction, and a Li anode protector for shuttling suppression by in situ generating a “”self-defensed”” SEI layer. Benefiting from these advantages, a cell with DMPII displays a stable cyclability with a low terminal charge potential of ∼3.6 V till the cell death, a considerable rate performance, and a good reversibility associated with Li2O2 formation and degradation Based on the exptl. and d. functional theory (DFT) calculation results, a working mechanism for a cell operation is also proposed. These results represent a promising progress in the development of multiple-functional RM for Li-O2 batteries. Moreover, we expect that this work gives an insight into the in situ protection of Li metal anode for board applications (e.g., Li-S batteries, all-solid-state Li-ion batteries, etc.).
Chemical Engineering Journal (Amsterdam, Netherlands) published new progress about Adsorption. 112-63-0 belongs to class esters-buliding-blocks, and the molecular formula is C19H34O2, Related Products of 112-63-0.
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics