Kutkat, Omnia et al. published their research in Pharmaceuticals in 2022 | CAS: 4163-60-4

(2S,3R,4S,5S,6R)-6-(Acetoxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (cas: 4163-60-4) belongs to esters. Esters are widespread in nature and are widely used in industry. In nature, fats are in general triesters derived from glycerol and fatty acids. Esters are responsible for the aroma of many fruits. Many esters have the potential for conformational isomerism, but they tend to adopt an s-cis (or Z) conformation rather than the s-trans (or E) alternative, due to a combination of hyperconjugation and dipole minimization effects. The preference for the Z conformation is influenced by the nature of the substituents and solvent, if present. Lactones with small rings are restricted to the s-trans (i.e. E) conformation due to their cyclic structure.HPLC of Formula: 4163-60-4

In Vitro and In Vivo Antiviral Studies of New Heteroannulated 1,2,3-Triazole Glycosides Targeting the Neuraminidase of Influenza A Viruses was written by Kutkat, Omnia;Kandeil, Ahmed;Moatasim, Yassmin;Elshaier, Yaseen A. M. M.;El-Sayed, Wael A.;Gaballah, Samir T.;El Taweel, Ahmed;Kamel, Mina Nabil;El Sayes, Mohamed;Ramadan, Mohammed A.;El-Shesheny, Rabeh;Abdel-Megeid, Farouk M. E.;Webby, Richard;Kayali, Ghazi;Ali, Mohamed A.. And the article was included in Pharmaceuticals in 2022.HPLC of Formula: 4163-60-4 This article mentions the following:

There is an urgent need to develop and synthesize new anti-influenza drugs with activity against different strains, resistance to mutations, and suitability for various populations. Herein, we tested in vitro and in vivo the antiviral activity of new 1,2,3-triazole glycosides incorporating benzimidazole, benzooxazole, or benzotriazole cores synthesized by using a click approach. The Cu-catalyzation strategy consisted of 1,3-dipolar cycloaddition of the azidoalkyl derivative of the resp. heterocyclic and different glycosyl acetylenes with five or six carbon sugar moieties. The antiviral activity of the synthesized glycosides against wild-type and neuraminidase inhibitor resistant strains of the avian influenza H5N1 and human influenza H1N1 viruses was high in vitro and in mice. Structure-activity relationship studies showed that varying the glycosyl moiety in the synthesized glycosides enhanced antiviral activity. The compound (2R,3R,4S,5R)-2-((1-(Benzo[d]thiazol-2-ylmethyl)-1H-1,2,3-triazol-4-yl)methoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate (Compound 9c) had a 50% inhibitory concentration (IC50) = 2.280 μM and a ligand lipophilic efficiency (LLE) of 6.84. The compound (2R,3R,4S,5R)-2-((1-((1H-Benzo[d]imidazol-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methoxy)tetrahydro-2H-pyran-3,4,5-triyl triacetate had IC50 = 2.75 μM and LLE = 7.3 after docking anal. with the H5N1 virus neuraminidase. Compound 9c achieved full protection from H1N1 infection and 80% protection from H5N1 in addition to a high binding energy with neuraminidase and was safe in vitro and in vivo. This compound is suitable for further clin. studies as a new neuraminidase inhibitor. In the experiment, the researchers used many compounds, for example, (2S,3R,4S,5S,6R)-6-(Acetoxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (cas: 4163-60-4HPLC of Formula: 4163-60-4).

(2S,3R,4S,5S,6R)-6-(Acetoxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetraacetate (cas: 4163-60-4) belongs to esters. Esters are widespread in nature and are widely used in industry. In nature, fats are in general triesters derived from glycerol and fatty acids. Esters are responsible for the aroma of many fruits. Many esters have the potential for conformational isomerism, but they tend to adopt an s-cis (or Z) conformation rather than the s-trans (or E) alternative, due to a combination of hyperconjugation and dipole minimization effects. The preference for the Z conformation is influenced by the nature of the substituents and solvent, if present. Lactones with small rings are restricted to the s-trans (i.e. E) conformation due to their cyclic structure.HPLC of Formula: 4163-60-4

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics