Gradzielski, Michael et al. published their research in Industrial & Engineering Chemistry Research in 2019 | CAS: 118-61-6

Ethyl 2-hydroxybenzoate (cas: 118-61-6) belongs to esters. Esters perform as high-grade solvents for a broad array of plastics, plasticizers, resins, and lacquers, and are one of the largest classes of synthetic lubricants on the commercial market. Esters are more polar than ethers but less polar than alcohols. They participate in hydrogen bonds as hydrogen-bond acceptors, but cannot act as hydrogen-bond donors, unlike their parent alcohols. This ability to participate in hydrogen bonding confers some water-solubility.Safety of Ethyl 2-hydroxybenzoate

Effect of Biocompatible Esters and Alcohols as Cosurfactants on Structure and Solubilization Behavior of the Zwitterionic Surfactant Tetradecyldimethylamine Oxide was written by Gradzielski, Michael;Horbaschek, Klaus;Deme, Bruno. And the article was included in Industrial & Engineering Chemistry Research in 2019.Safety of Ethyl 2-hydroxybenzoate This article mentions the following:

In this work, we compare the effect of different monoterpenoid alcs. that differ with respect to their number of double bonds and simple aromatic esters of variable mol. architecture as cosurfactants on the phase behavior of the zwitterionic surfactant tetradecyldimethylamine oxide (TDMAO) and its solubilization behavior, with respect to decane as a model paraffin oil. The esters are shown to be potent cosurfactants but require higher concentrations to achieve similar effects, with respect to structural changes and solubilization enhancement. Compared to the alcs., they solubilize somewhat smaller amounts of decane, do reduce the interfacial tension substantially less, and also do not form an isotropic phase of unilamellar vesicles (L4) but directly multilamellar vesicles (Lαl). A very interesting effect is the significance of the detailed mol. architecture of the esters, as Et benzoate and benzyl acetate, both having the same sum formula, differ significantly, with respect to their cosurfactant properties. However, all systems allow one to incorporate relatively large amounts of the oil. For the case of the esters, this always leads to the formation of oil-in-water (O/W) microemulsion droplets while the alcs. can build in relatively large amounts of oil within their vesicular structures. These findings show that these biofriendly cosurfactants allow to formulate structurally rather versatile systems and efficiently enhance oil solubility for the given surfactant system. In the experiment, the researchers used many compounds, for example, Ethyl 2-hydroxybenzoate (cas: 118-61-6Safety of Ethyl 2-hydroxybenzoate).

Ethyl 2-hydroxybenzoate (cas: 118-61-6) belongs to esters. Esters perform as high-grade solvents for a broad array of plastics, plasticizers, resins, and lacquers, and are one of the largest classes of synthetic lubricants on the commercial market. Esters are more polar than ethers but less polar than alcohols. They participate in hydrogen bonds as hydrogen-bond acceptors, but cannot act as hydrogen-bond donors, unlike their parent alcohols. This ability to participate in hydrogen bonding confers some water-solubility.Safety of Ethyl 2-hydroxybenzoate

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics