Microporous Formation Mechanism of Biaxial Stretching PA6/PP Membranes with High Porosity and Uniform Pore Size Distribution was written by Fang, Wenxiang;Liang, Guixue;Li, Jiang;Guo, Shaoyun. And the article was included in Polymers (Basel, Switzerland) in 2022.Application In Synthesis of 2,2-Bis(((3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoyl)oxy)methyl)propane-1,3-diyl bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate) This article mentions the following:
The low porosity and wide pore size distribution of biaxial stretching PP microporous membranes continue to be the primary impediments to their industrial application. To solve this problem, there is a critical and urgent need to study the micropore-forming mechanism of PP membranes. In this research, the interfacial micropore formation mechanism of PA6/PP membranes during biaxial stretching was investigated. PA6/PP membranes containing spherical PA6 and fibrillar PA6 were found to exhibit different interfacial micropore formation mechanisms. Numerous micropores were generated in the PA6/PP membranes, containing PA6 spherical particles via the interface separation between the PP matrix and PA6 spherical particles during longitudinal stretching. Subsequent transverse stretching further expanded the two-phase interface, promoting the breakdown and fibrosis of the PP matrix and forming a spider-web-like microporous structure centered on spherical PA6 particles. In PA6/PP membranes with PA6 fibers, fewer micropores were generated during longitudinal stretching, but the subsequent transverse stretching violently separated the PA6 fibers, resulting in a dense fiber network composed of PA6 fibers interwoven with PP fibers. Crucially, the PA6/PP biaxial stretching of microporous membranes presented an optimized pore structure, higher porosity, narrower pore size distribution, and better permeability than β-PP membranes. Furthermore, this study explored a new approach to the fabrication of high-performance PA6/PP microporous membranes, with good prospects for potential industrial application. In the experiment, the researchers used many compounds, for example, 2,2-Bis(((3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoyl)oxy)methyl)propane-1,3-diyl bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate) (cas: 6683-19-8Application In Synthesis of 2,2-Bis(((3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoyl)oxy)methyl)propane-1,3-diyl bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate)).
2,2-Bis(((3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoyl)oxy)methyl)propane-1,3-diyl bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate) (cas: 6683-19-8) belongs to esters. Esters are widespread in nature and are widely used in industry. In nature, fats are in general triesters derived from glycerol and fatty acids. Esters are responsible for the aroma of many fruits, including apples, durians, pears, bananas, pineapples, and strawberries. Esterification is the general name for a chemical reaction in which two reactants (typically an alcohol and an acid) form an ester as the reaction product. Esters are common in organic chemistry and biological materials.Application In Synthesis of 2,2-Bis(((3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoyl)oxy)methyl)propane-1,3-diyl bis(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propanoate)
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics