Dow, Nathan W.’s team published research in Journal of the American Chemical Society in 144 | CAS: 1877-71-0

Journal of the American Chemical Society published new progress about 1877-71-0. 1877-71-0 belongs to esters-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Ester, name is 3-(Methoxycarbonyl)benzoic acid, and the molecular formula is C9H8O4, Safety of 3-(Methoxycarbonyl)benzoic acid.

Dow, Nathan W. published the artcileDecarboxylative Borylation and Cross-Coupling of (Hetero)aryl Acids Enabled by Copper Charge Transfer Catalysis, Safety of 3-(Methoxycarbonyl)benzoic acid, the publication is Journal of the American Chemical Society (2022), 144(14), 6163-6172, database is CAplus and MEDLINE.

Authors report a copper-catalyzed strategy for arylboronic ester synthesis that exploits photoinduced ligand-to-metal charge transfer (LMCT) to convert (hetero)aryl acids into aryl radicals amenable to ambient-temperature borylation. This near-UV process occurs under mild conditions, requires no prefunctionalization of the native acid, and operates broadly across diverse aryl, heteroaryl, and pharmaceutical substrates. They also report a one-pot procedure for decarboxylative cross-coupling that merges catalytic LMCT borylation and palladium-catalyzed Suzuki-Miyaura arylation, vinylation, or alkylation with organo bromides to access a range of value-added products. The utility of these protocols is highlighted through the development of a heteroselective double-decarboxylative C(sp2)-C(sp2) coupling sequence, pairing copper-catalyzed LMCT borylation and halogenation processes of two distinct acids (including pharmaceutical substrates) with subsequent Suzuki-Miyaura cross-coupling.

Journal of the American Chemical Society published new progress about 1877-71-0. 1877-71-0 belongs to esters-buliding-blocks, auxiliary class Carboxylic acid,Benzene,Ester, name is 3-(Methoxycarbonyl)benzoic acid, and the molecular formula is C9H8O4, Safety of 3-(Methoxycarbonyl)benzoic acid.

Referemce:
https://en.wikipedia.org/wiki/Ester,
Ester – an overview | ScienceDirect Topics