Aubrecht, Jaroslav’s team published research in Catalysis Today in 397-399 | CAS: 627-93-0

Catalysis Today published new progress about 627-93-0. 627-93-0 belongs to esters-buliding-blocks, auxiliary class Ploymers, name is Dimethyl adipate, and the molecular formula is C8H14O4, SDS of cas: 627-93-0.

Aubrecht, Jaroslav published the artcileUnderstanding of the key properties of supported copper-based catalysts and their influence on ester hydrogenolysis, SDS of cas: 627-93-0, the publication is Catalysis Today (2022), 173-181, database is CAplus.

The application of Cr-free Cu-based catalysts in ester hydrogenolysis is a modern environmentally-friendly research approach. The comprehensive study of four supported Cu-based catalysts was performed using 8 wt% of Cu loaded on Al2O3, ZnO, TiO2 and ZrO2 supports by an impregnation method. Using XRD, H2-TPR, BET, pyridine-TPD, CO2-TPD and N2O-RFC methods, the effect of the support on the formation of Cu-nanoparticles was described. Al2O3 was evaluated as the support ensuring the highest nanoparticles dispersion, while Cu nanoparticles in Cu-TiO2 were liable to sintering. The catalysts were tested in di-Me adipate hydrogenolysis, where the catalyst performance and activity (TOF) were evaluated and Cu-ZrO2 showed the best results. A correlation between the number of acid-base sites and the catalyst selectivity was revealed and the catalyst effect on the formation of various byproducts was described. The intrinsic selectivity to hydrogenolysis products was found to decrease with the increasing acid-base character of the supports whereas the selectivity to transesterification and cyclization products increased. The hydrogenolysis activity was not a simple function of the number of the surface copper atoms, but it was affected by the support nature and its properties.

Catalysis Today published new progress about 627-93-0. 627-93-0 belongs to esters-buliding-blocks, auxiliary class Ploymers, name is Dimethyl adipate, and the molecular formula is C8H14O4, SDS of cas: 627-93-0.

Referemce:
https://en.wikipedia.org/wiki/Ester,
Ester – an overview | ScienceDirect Topics