Bonepally, Karunakar Reddy published the artcileRapid and Systematic Exploration of Chemical Space Relevant to Artemisinins: Anti-malarial Activities of Skeletally Diversified Tetracyclic Peroxides and 6-Aza-artemisinins, Formula: C7H12O3, the main research area is artemisinin aza preparation antimalarial; tetracyclic peroxide preparation antimalarial.
To achieve both structural changes and rapid synthesis of the tetracyclic scaffold relevant to artemisinins, we explored two kinds of de novo synthetic approaches that generate both skeletally diversified tetracyclic peroxides and 6-aza-artemisinins. The antimalarial activities of the tetracyclic peroxides with distinct skeletal arrays, however, were moderate and far inferior to artemisinins. Given the privileged scaffold of artemisinins, we next envisioned element implantation at the C6 position with a nitrogen without the trimmings of substituents and functional groups. This mol. design allowed the deep-seated structural modification of the hitherto unexplored cyclohexane moiety (C-ring) while keeping the three-dimensional structure of artemisinins. Notably, this approach induced dramatic changes of retrosynthetic transforms that allow an expeditious catalytic asym. synthesis with generation of substitutional variations at three sites (N6, C9, and C3) of the 6-aza-artemisinins. These de novo synthetic approaches led to the lead discovery with substantial intensification of the in vivo activities, which undermine the prevailing notion that the C-ring of artemisinins appears to be merely a structural unit but to be a functional area as the antimalarial pharmacophore. Furthermore, we unexpectedly found that racemic 6-aza-artemisinin (I) exerted exceedingly potent in vivo efficacies superior to the chiral one and the first-line drug, artesunate.
Journal of Organic Chemistry published new progress about Antimalarials. 539-88-8 belongs to class esters-buliding-blocks, name is Ethyl 4-oxopentanoate, and the molecular formula is C7H12O3, Formula: C7H12O3.
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics