Sun, Peng-Wei’s team published research in Chinese Journal of Chemistry in 2022-05-01 | CAS: 583-04-0

Chinese Journal of Chemistry published new progress about Benzenesulfonamides Role: SPN (Synthetic Preparation), PREP (Preparation). 583-04-0 belongs to class esters-buliding-blocks, name is Allyl benzoate, and the molecular formula is C10H10O2, Related Products of esters-buliding-blocks.

Sun, Peng-Wei published the artcileCobalt-Catalyzed Intermolecular Hydroamination of Unactivated Alkenes Using NFSI as Nitrogen Source, Related Products of esters-buliding-blocks, the main research area is diphenylsulfonimide preparation chemoselective regioselective; alkene fluorobenzenesulfonimide cobalt hydroamination.

Comprehensive Summary : Cheap metal (Fe, Mn, and Co)-catalyzed hydroamination of alkenes has been an attractive method for synthesis of amines because of biocompatibility of metal, excellent Markovnikov selectivity and chemoselectivity. However, most reports are limited to unsaturated nitrogen sources (nitric oxide, azos, azides, cyano, etc.), for which aminated products are very limited. Notably, while used widely for fluorinating reaction, N-fluorobenzenesulfonimide (NFSI) as amine source for hydroamination has seldom been reported. Here authors developed a cobalt-catalyzed intermol. hydroamination of unactivated alkenes using NFSI as nitrogen source under mild conditions. The reaction exhibits excellent chemo- and regio-selectivity with no hydrofluorination or linear-selectivity products. Notably, the reaction proceeded with excellent yield even though the amount of Co(salen) catalyst was reduced to 0.2 mol%. Recently, a similar work was also reported by Zhang and coworkers (reference 19).

Chinese Journal of Chemistry published new progress about Benzenesulfonamides Role: SPN (Synthetic Preparation), PREP (Preparation). 583-04-0 belongs to class esters-buliding-blocks, name is Allyl benzoate, and the molecular formula is C10H10O2, Related Products of esters-buliding-blocks.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics