Design and synthesis of novel androgen receptor antagonists via molecular modeling was written by Zhao, Chao;Choi, You Hee;Khadka, Daulat Bikram;Jin, Yifeng;Lee, Kwang-Youl;Cho, Won-Jea. And the article was included in Bioorganic & Medicinal Chemistry in 2016.Recommanded Product: Ethyl 3-ethoxypropanoate The following contents are mentioned in the article:
Several androgen receptor (AR) antagonists are clin. prescribed to treat prostate cancer. Unfortunately, many patients become resistant to the existing AR antagonists. To overcome this, a novel AR antagonist candidate called DIMN was discovered by our research group in 2013. In order to develop compounds with improved potency, we designed novel DIMN derivatives based on a docking study and substituted carbons with heteroatom moieties. Encouraging in vitro results for compounds 1b, 1c, 1e, 3c, and 4c proved that the new design was successful. Among the newly synthesized compounds, 1e exhibited the strongest inhibitory effect on LNCaP cell growth (IC50 = 0.35 μM) and also acted as a competitive AR antagonist with selectivity over the estrogen receptor (ER) and the glucocorticoid receptor (GR). A docking study of compound 1e fully supported these biol. results. Compound 1e is considered to be a novel, potent and AR-specific antagonist for treating prostate cancer. Thus, our study successfully applied mol. modeling and bioisosteric replacement for hit optimization. The methods here provide a guide for future development of drug candidates through structure-based drug discovery and chem. modifications. This study involved multiple reactions and reactants, such as Ethyl 3-ethoxypropanoate (cas: 763-69-9Recommanded Product: Ethyl 3-ethoxypropanoate).
Ethyl 3-ethoxypropanoate (cas: 763-69-9) belongs to esters. Carboxylic acid esters of low molecular weight are colourless, volatile liquids with pleasant odours, slightly soluble in water. Esters contain a carbonyl center, which gives rise to 120° C–C–O and O–C–O angles. Unlike amides, esters are structurally flexible functional groups because rotation about the C–O–C bonds has a low barrier. Their flexibility and low polarity is manifested in their physical properties; they tend to be less rigid (lower melting point) and more volatile (lower boiling point) than the corresponding amides. Recommanded Product: Ethyl 3-ethoxypropanoate
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics