Solvent-Assisted Stepwise Redox Approach To Generate Zeolite NaA-Supported K2O as Strong Base Catalyst for Michael Addition of Ethyl Acrylate with Ethanol was written by Zhang, Zhuxiu;Hu, Mengnan;Lv, Baoshuai;Kang, Jingjuan;Tang, Jihai;Fei, Zhaoyang;Chen, Xian;Liu, Qing;Cui, Mifen;Qiao, Xu. And the article was included in ACS Omega in 2018.Application of 763-69-9 The following contents are mentioned in the article:
Solid base catalysts featuring green, robustness, and high activity play an important role in the current fine-chem. and petrochem. industry. Normally, the generation of supported K2O by thermal decomposition of KNO3 requires high temperature, and this process can sometimes destroy the structure of supporting materials. We herein report a solvent-assisted stepwise redox (SASR) approach to generate zeolite NaA-supported K2O, which we call K2O/NaA, that function as the solid base catalyst for Michael addition reaction between ethanol and Et acrylate. The solvent-assisted redox decomposition process of KNO3 at elevated temperature was investigated by thermogravimetry-mass spectrometry. It reveals that after reducing a minor amount of KNO3 at 400 °C, the organic solvent decomposes to form carbon, which promotes the reduction of KNO3 to generate strong basicity on the zeolite NaA at 600 °C. The resulting material, K2O/NaA-S, exhibits improved catalytic activity in Michael addition reaction over other benchmark base catalysts that have been used in this reaction. This catalyst is durable for at least four catalytic cycles without apparent loss in activity. K2O/NaA-S exhibits larger reaction rate constant yet lower activation energy than K2O/NaA prepared by thermal decomposition method. The SASR approach described in this paper represents a new blueprint for the generation of the supported alkali oxide as the solid base catalyst. This study involved multiple reactions and reactants, such as Ethyl 3-ethoxypropanoate (cas: 763-69-9Application of 763-69-9).
Ethyl 3-ethoxypropanoate (cas: 763-69-9) belongs to esters. Carboxylic acid esters of low molecular weight are colourless, volatile liquids with pleasant odours, slightly soluble in water. Many esters have the potential for conformational isomerism, but they tend to adopt an s-cis (or Z) conformation rather than the s-trans (or E) alternative, due to a combination of hyperconjugation and dipole minimization effects. The preference for the Z conformation is influenced by the nature of the substituents and solvent, if present. Lactones with small rings are restricted to the s-trans (i.e. E) conformation due to their cyclic structure.Application of 763-69-9
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics