[1,2,3]Triazolo[4,5-d]pyrimidine derivatives incorporating (thio)urea moiety as a novel scaffold for LSD1 inhibitors was written by Li, Zhong-Hua;Ma, Jin-Lian;Liu, Gai-Zhi;Zhang, Xin-Hui;Qin, Ting-Ting;Ren, Wei-Hong;Zhao, Tao-Qian;Chen, Xiao-Hui;Zhang, Zhen-Qiang. And the article was included in European Journal of Medicinal Chemistry in 2020.Formula: C4H7NS The following contents are mentioned in the article:
Lysine specific demethylase 1 (LSD1) plays an essential role in maintaining a balanced methylation status at histone tails. Overexpression of LSD1 has been involved in the development of a variety of human diseases, including cancers. Herein, on the basis of our previously developed LSD1 inhibitors, two series of new [1,2,3]triazolo[4,5-d]pyrimidine derivatives incorporating (thio)urea moiety were designed and evaluated for their LSD1 inhibitory abilities, leading to a novel chem. class of LSD1 inhibitors. Among them, compound 31 was found to moderately inhibit LSD1 activity, as well as increase the expression of H3K4me2 at the cellular level. This compound also showed good selectivity against MAO-A/-B, and a panel of kinases such as CDK and BTK. Besides, the MTT assay suggested that the selected compounds could inhibit the proliferation of LSD1-overexpressed cancer cells. Although this class of compounds only showed moderate anti-LSD1 activity in the micromolar range, this work presents a novel chemotype of LSD1 inhibitors with good enzyme selectivity as well as cellular LSD1 inhibitory activity, and could provide a useful template for the development of more potent LSD1 inhibitors for cancer treatment. This study involved multiple reactions and reactants, such as Isopropylisothiocyanate (cas: 2253-73-8Formula: C4H7NS).
Isopropylisothiocyanate (cas: 2253-73-8) belongs to esters. Esters typically have a pleasant smell; those of low molecular weight are commonly used as fragrances and are found in essential oils and pheromones. Many esters have the potential for conformational isomerism, but they tend to adopt an s-cis (or Z) conformation rather than the s-trans (or E) alternative, due to a combination of hyperconjugation and dipole minimization effects. The preference for the Z conformation is influenced by the nature of the substituents and solvent, if present. Lactones with small rings are restricted to the s-trans (i.e. E) conformation due to their cyclic structure.Formula: C4H7NS
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics