The influence of ergosterol on the action of the hop oil and its major terpenes on model fungi membranes. Towards understanding the mechanism of action of phytocompounds for food and plant protection was written by Polec, Karolina;Olechowska, Karolina;Klejdysz, Amanda;Dymek, Michal;Rachwalik, Rafal;Sikora, Elzbieta;Hac-Wydro, Katarzyna. And the article was included in Chemistry and Physics of Lipids in 2021.Quality Control of (2R,9Z)-1-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)-3-(palmitoyloxy)propan-2-yl oleate The following contents are mentioned in the article:
The aim of this work was to find the correlation between the content of ergosterol in fungi membrane and the action of the hop essential oil, myrcene and humulene on its properties. To reach this goal, the monolayers and bilayers composed of phosphatidylcholine, phosphatidyethanol amine and ergosterol, differing in the concentration of sterol, were used as model membrane systems. The impact of the essential oil and its major terpenes on one component ergosterol film was also investigated. It was found that pure isolated terpenes, in contrast to the hop oil being the mixture of them, do not incorporate into pure ergosterol membrane, however, they cause the loss of monolayer material from the interface. These results are in contrast to the effect of these terpenes on phospholipid films reported previously and they may suggest a strong effect of ergosterol on the behavior of terpenes in the mixed systems. Surprisingly, for model membranes, the effect of myrcene was qual. similar to the effect of the hop oil and ergosterol was found to regulate the incorporation of both these substances into the film. In contrast, very strong correlation between ergosterol content and the action of humulene was found. Namely, the ability of humulene to change model membrane properties was found to increase with ergosterol concentration Addnl., the differentiating effect of ergosterol on humulene action in membranes was much more pronounced than for myrcene or the hop oil. Interestingly, at the highest ergosterol level the influence of humulene was even stronger than the effect of the hop oil. This is very important finding suggesting that ergosterol may regulate the sensitivity of particular membrane to the impact of humulene. Summarizing, ergosterol substantially differentiates the effect of the hop oil, myrcene and humulene on the lipid systems and it can be the mol. important for antifungal effect of the essential oil and terpenes. This study involved multiple reactions and reactants, such as (2R,9Z)-1-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)-3-(palmitoyloxy)propan-2-yl oleate (cas: 26662-94-2Quality Control of (2R,9Z)-1-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)-3-(palmitoyloxy)propan-2-yl oleate).
(2R,9Z)-1-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)-3-(palmitoyloxy)propan-2-yl oleate (cas: 26662-94-2) belongs to esters. Esters perform as high-grade solvents for a broad array of plastics, plasticizers, resins, and lacquers, and are one of the largest classes of synthetic lubricants on the commercial market. Esterification is the general name for a chemical reaction in which two reactants (typically an alcohol and an acid) form an ester as the reaction product. Esters are common in organic chemistry and biological materials.Quality Control of (2R,9Z)-1-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)-3-(palmitoyloxy)propan-2-yl oleate
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics