Fingerprinting the volatile profile of traditional tobacco and e-cigarettes: A comparative study was written by Berenguer, Cristina;Pereira, Jorge A. M.;Camara, Jose S.. And the article was included in Microchemical Journal in 2021.HPLC of Formula: 112-14-1 The following contents are mentioned in the article:
Electronic cigarettes (e-cigarettes) have become popular alternatives to traditional tobacco. Despite this, a comprehensive evaluation of their long-term effects and safety for the consumers and the environment is missing. To contribute to filling this gap, headspace solid-phase microextraction combined with gas chromatog.-mass spectrometry (HS-SPME/GC-MS) was employed to establish and compare the volatile fingerprints of traditional tobacco and e-cigarettes. The anal. of traditional tobacco included two popular brands and different parts of the cigarette (solid tobacco, cigarette smoke, cigarette paper and filter). Regarding the e-cigarettes, two e-liquids, with and without nicotine, their main constituents (e-bases) and corresponding vapors, obtained under default vaping (power) conditions, were analyzed. A total of 80 volatile organic compounds (VOCs) were identified in traditional tobacco, of which 14 carbonyl compounds, 9 benzene derivatives, 9 Et esters and 9 hydrocarbons. Slight differences in the volatile profile of cigarette paper and filter between the two brands were also detected, showing that exogenous components of tobacco influence the flavor and harmfulness perceived by the smokers. In turn, 92 VOCs were identified in e-cigarettes, including 31 Et esters, 18 alcs. and 10 hydrocarbons. No VOCs with potentially toxic or harmful effects were identified in the vapor of Do It Yourself (DIY) liquids and Premium samples. Therefore, taking into consideration the volatile compositions obtained for smoking and vaping procedures under normal conditions of operation and using certified e-liquid mixtures, the e-cigarettes analyzed seemed to constitute a valid and less harmful alternative to traditional tobacco for smokers, second-hand smokers and the environment. This study involved multiple reactions and reactants, such as Octyl acetate (cas: 112-14-1HPLC of Formula: 112-14-1).
Octyl acetate (cas: 112-14-1) belongs to esters. Esters typically have a pleasant smell; those of low molecular weight are commonly used as fragrances and are found in essential oils and pheromones. Many esters have the potential for conformational isomerism, but they tend to adopt an s-cis (or Z) conformation rather than the s-trans (or E) alternative, due to a combination of hyperconjugation and dipole minimization effects. The preference for the Z conformation is influenced by the nature of the substituents and solvent, if present. Lactones with small rings are restricted to the s-trans (i.e. E) conformation due to their cyclic structure.HPLC of Formula: 112-14-1
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics