de la Osa, Clara’s team published research in Plant Journal in 2022-07-31 | 112-63-0

Plant Journal published new progress about Biomass. 112-63-0 belongs to class esters-buliding-blocks, and the molecular formula is C19H34O2, Safety of (9Z,12Z)-Methyl octadeca-9,12-dienoate.

de la Osa, Clara; Perez-Lopez, Jesus; Feria, Ana-Belen; Baena, Guillermo; Marino, Daniel; Coleto, Inmaculada; Perez-Montano, Francisco; Gandullo, Jacinto; Echevarria, Cristina; Garcia-Maurino, Sofia; Monreal, Jose A. published the artcile< Knock-down of phosphoenolpyruvate carboxylase 3 negatively impacts growth, productivity, and responses to salt stress in sorghum (Sorghum bicolor L.)>, Safety of (9Z,12Z)-Methyl octadeca-9,12-dienoate, the main research area is Sorghum root leaf growth nitrate reductase citrate synthase; Sorghum bicolor ; RNA interference; central metabolism; phosphoenolpyruvate carboxylase; productivity; salt stress; stomata.

Phosphoenolpyruvate carboxylase (PEPC) is a carboxylating enzyme with important roles in plant metabolism Most studies in C4 plants have focused on photosynthetic PEPC, but less is known about non-photosynthetic PEPC isoenzymes, especially with respect to their physiol. functions. In this work, we analyzed the precise roles of the sorghum (Sorghum bicolor) PPC3 isoenzyme by the use of knock-down lines with the SbPPC3 gene silenced (Ppc3 lines). Ppc3 plants showed reduced stomatal conductance and plant size, a delay in flowering time, and reduced seed production In addition, silenced plants accumulated stress indicators such as Asn, citrate, malate, and sucrose in roots and showed higher citrate synthase activity, even in control conditions. Salinity further affected stomatal conductance and yield and had a deeper impact on central metabolism in silenced plants compared to wild type, more notably in roots, with Ppc3 plants showing higher nitrate reductase and NADH-glutamate synthase activity in roots and the accumulation of mols. with a higher N/C ratio. Taken together, our results show that although SbPPC3 is predominantly a root protein, its absence causes deep changes in plant physiol. and metabolism in roots and leaves, neg. affecting maximal stomatal opening, growth, productivity, and stress responses in sorghum plants. The consequences of SbPPC3 silencing suggest that this protein, and maybe orthologs in other plants, could be an important target to improve plant growth, productivity, and resistance to salt stress and other stresses where non-photosynthetic PEPCs may be implicated.

Plant Journal published new progress about Biomass. 112-63-0 belongs to class esters-buliding-blocks, and the molecular formula is C19H34O2, Safety of (9Z,12Z)-Methyl octadeca-9,12-dienoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics