Stalinska, Joanna; Vittori, Cecilia; Ingraham, Charles H. IV; Carson, Sean C.; Plaisance-Bonstaff, Karlie; Lassak, Adam; Faia, Celeste; Colley, Susan B.; Peruzzi, Francesca; Reiss, Krzysztof; Jursic, Branko S. published the artcile< Anti-glioblastoma effects of phenolic variants of benzoylphenoxyacetamide (BPA) with high potential for blood brain barrier penetration>, HPLC of Formula: 112-63-0, the main research area is human glioblastoma benzoylphenoxyacetamide blood brain barrier anticancer.
Glioblastomas are the most aggressive brain tumors for which therapeutic options are limited. Current therapies against glioblastoma include surgical resection, followed by radiotherapy plus concomitant treatment and maintenance with temozolomide (TMZ), however, these standard therapies are often ineffective, and average survival time for glioblastoma patients is between 12 and 18 mo. We have previously reported a strong anti-glioblastoma activity of several metabolic compounds, which were synthesized based compounds, which were synthesized based on the chem. structure of a common lipid-lowering drug, fenofibrate, and share a general mol. skeleton of benzoylphenoxyacetamide (BPA). Extensive computational analyses of phenol and naphthol moieties added to the BPA skeleton were performed in this study with the objective of selecting new BPA variants for subsequent compound preparation and anti-glioblastoma testing. Initially, 81 structural variations were considered and their phys. properties such as solubility (logS), blood-brain partitioning (logBB), and probability of entering the CNS calculated by the Central Nervous System-Multiparameter Optimization (MPO-CNS) algorithm were evaluated. From this initial list, 18 compounds were further evaluated for anti-glioblastoma activity in vitro. Nine compounds demonstrated desirable glioblastoma cell toxicity in cell culture, and two of them, HR51, and HR59 demonstrated significantly improved capability of crossing the model blood-brain-barrier (BBB) composed of endothelial cells, astrocytes and pericytes.
Scientific Reports published new progress about Antitumor agents. 112-63-0 belongs to class esters-buliding-blocks, and the molecular formula is C19H34O2, HPLC of Formula: 112-63-0.
Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics