Fu, Kun’s team published research in Energy (Oxford, United Kingdom) in 2021-04-01 | 112-63-0

Energy (Oxford, United Kingdom) published new progress about Absorption. 112-63-0 belongs to class esters-buliding-blocks, and the molecular formula is C19H34O2, SDS of cas: 112-63-0.

Fu, Kun; Liu, Chenxu; Wang, Lemeng; Huang, Xiayu; Fu, Dong published the artcile< Performance and mechanism of CO2 absorption in 2-ethylhexan-1-amine + glyme non-aqueous solutions>, SDS of cas: 112-63-0, the main research area is carbon dioxide glyme ethylhexan amine absorption.

In this work, novel non-aqueous absorbents composed of 2-ethylhexan-1-amine (EHA) and glyme were proposed for CO2 capture. The absorption performance of CO2 in EHA + diglyme, EHA + triglyme and EHA + tetraglyme non-aqueous solutions was investigated and the viscosities (η) of the CO2-saturated absorbents were measured. Besides the experiments, kinetic models were applied to correlate the CO2 absorption. The activation energy (Ea) was obtained from Arrhenius equation, and the absorption mechanism was deduced. The results showed that both Lagergren model and Avrami model can accurately correlate and predict the time-dependent absorption amount, thus an optimized composition under which excellent absorption performance and relatively low η and Ea can be simultaneously achieved was determined Compared to water-based absorbents like MEA, the optimized non-aqueous absorbents take the advantages of better absorption performance and lower activation energy. Moreover, the glyme solvents have about 50% lower sp. heat capacities and much higher b.ps. (≥435 K) than water, which is expected to greatly reduce the sensible heat and the latent heat of the solvent during regeneration. Therefore, the proposed novel absorbents have promising industrial application potential in the CO2 capture process.

Energy (Oxford, United Kingdom) published new progress about Absorption. 112-63-0 belongs to class esters-buliding-blocks, and the molecular formula is C19H34O2, SDS of cas: 112-63-0.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics