Fiorito, Jole’s team published research in Journal of Medicinal Chemistry in 2017-11-09 | 112-63-0

Journal of Medicinal Chemistry published new progress about Alzheimer disease. 112-63-0 belongs to class esters-buliding-blocks, and the molecular formula is C19H34O2, Safety of (9Z,12Z)-Methyl octadeca-9,12-dienoate.

Fiorito, Jole; Vendome, Jeremie; Saeed, Faisal; Staniszewski, Agnieszka; Zhang, Hong; Yan, Shijun; Deng, Shi-Xian; Arancio, Ottavio; Landry, Donald W. published the artcile< Identification of a Novel 1,2,3,4-Tetrahydrobenzo[b][1,6]naphthyridine Analogue as a Potent Phosphodiesterase 5 Inhibitor with Improved Aqueous Solubility for the Treatment of Alzheimer's Disease>, Safety of (9Z,12Z)-Methyl octadeca-9,12-dienoate, the main research area is tetrahydrobenzonaphthyridine phosphodiesterase inhibitor solubility antialzheimer Alzheimer.

Phosphodiesterase 5 (PDE5) hydrolyzes cGMP leading to increased levels of the cAMP response element binding protein (CREB), a transcriptional factor involved with learning and memory processes. The authors previously reported potent quinoline-based PDE5 inhibitors (PDE5Is) for the treatment of Alzheimer’s disease (AD). However, the low aqueous solubility rendered them undesirable drug candidates. Here the authors report a series of novel PDE5Is with two new scaffolds, 1,2,3,4-tetrahydrobenzo[b][1,6]naphthyridine and 2,3-dihydro-1H-pyrrolo[3,4-b]quinolin-1-one. Among them, compound I, the most potent compound, has an excellent in vitro IC50 (0.056 nM) and improved aqueous solubility as well as good efficacy in a mouse model of AD. Furthermore, the authors are proposing two plausible binding modes obtained through in silico docking, which provide insights into the structural basis of the activity of the two series of compounds reported herein.

Journal of Medicinal Chemistry published new progress about Alzheimer disease. 112-63-0 belongs to class esters-buliding-blocks, and the molecular formula is C19H34O2, Safety of (9Z,12Z)-Methyl octadeca-9,12-dienoate.

Referemce:
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics