Extracurricular laboratory: Synthetic route of 6H-Benzo[c]chromen-6-one

COA of Formula: C13H8O2. Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.

Authors Bhunia, SK; Das, P; Nandi, S; Jana, R in AMER CHEMICAL SOC published article about C-H FUNCTIONALIZATION; CARBON-DIOXIDE; DUAL CATALYSIS; DRIVEN CARBOXYLATION; UNACTIVATED PRIMARY; BUILDING-BLOCK; BONDS; HALIDES; ACIDS; HYDROCARBOXYLATION in [Bhunia, Samir Kumar; Das, Pritha; Nandi, Shantanu; Jana, Ranjan] CSIR Indian Inst Chem Biol, Organ & Med Chem Div, 4 Raja SC Mullick Rd, Kolkata 700032, W Bengal, India; [Bhunia, Samir Kumar; Jana, Ranjan] Acad Sci & Innovat Res AcSIR, Kolkata 700032, W Bengal, India in 2019.0, Cited 88.0. COA of Formula: C13H8O2. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9

We report herein a visible-light-promoted, highly practical carboxylation of readily accessible aryl triflates at ambient temperature and a balloon pressure of CO2 by the combined use of palladium and photoredox Ir(III) catalysts. Strikingly, the stoichiometric metallic reductant is replaced by a nonmetallic amine reductant providing an environmentally benign carboxylation process. In addition, one-pot synthesis of a carboxylic acid directly from phenol and modification of estrone and concise synthesis of pharmaceutical drugs adapalene and bexarotene have been accomplished via late-stage carboxylation reaction. Furthermore, a parallel decarboxylation-carboxylation reaction has been demonstrated in an H-type closed vessel that is an interesting concept for the strategic sector. Spectroscopic and spectroelectrochemical studies indicated electron transfer from the Ir(III)/DIPEA combination to generate aryl carboxylate and Pd(0) for catalytic turnover.

COA of Formula: C13H8O2. Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

What about chemistry interests you the most Methyl 2,2-dimethoxyacetate

Welcome to talk about 89-91-8, If you have any questions, you can contact Li, ZM; Long, JX; Zeng, Q; Wu, YH; Cao, ML; Liu, SJ; Li, XH or send Email.. Formula: C5H10O4

Recently I am researching about SUGARCANE BAGASSE; DIETHYL MALEATE; DEPOLYMERIZATION; EFFICIENT; DELIGNIFICATION; OXIDATION; CLEAVAGE; MONOMERS; BIOMASS; PHENOL, Saw an article supported by the Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21736003, 21690083]; Science and Technology Program of Guangzhou City [201804020014]; Guangdong Province, China [2020A0505100008, 2017B090903003]; Key Research and Development Program of Jiangxi Province [20202BBGL73118]. Published in AMER CHEMICAL SOC in WASHINGTON ,Authors: Li, ZM; Long, JX; Zeng, Q; Wu, YH; Cao, ML; Liu, SJ; Li, XH. The CAS is 89-91-8. Through research, I have a further understanding and discovery of Methyl 2,2-dimethoxyacetate. Formula: C5H10O4

Catalytic conversion of lignin to versatile aromatic compounds is attracting increasing attention. However, it is highly desirable but challenging to produce a specific chemical with high yield through lignin depolymerization in a one-pot process because of the complex structure of the lignin molecule (mainly composed of H, G, and S units). In this study, a series of metal-based deep eutectic solvents (M-DESs) were prepared and used for the catalytic tailoring of lignin H units to produce value-added methyl p-hydroxycinnamate (MPC). In particular, M-DES ChCl[FeCl3](2) showed excellent catalytic performance for the selective production of MPC as the sole product with high yield and selectivity (105.8 mg g(-1) and 74.1%, respectively). Extensive characterizations using 2D HSQC NMR, C-13 NMR, and GPC demonstrated that MPC was obtained from the selective tailoring of p-coumaric acid (pCA) units via the cleavage of ester bonds in lignin. Furthermore, M-DES ChCl[FeCl3](2) also exhibited efficiency to other herbaceous lignins, and showed excellent recyclability. Therefore, this work provides an effective strategy for the valorization of lignin.

Welcome to talk about 89-91-8, If you have any questions, you can contact Li, ZM; Long, JX; Zeng, Q; Wu, YH; Cao, ML; Liu, SJ; Li, XH or send Email.. Formula: C5H10O4

Reference:
Patent; U C B, Societe Anonyme; US4041077; (1977); A;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

A new application about99-27-4

Bye, fridends, I hope you can learn more about C10H11NO4, If you have any questions, you can browse other blog as well. See you lster.. Formula: C10H11NO4

Formula: C10H11NO4. Zhou, DD; Zhang, HC; Ma, CH; Han, HJ; Xie, MR in [Zhou, Dandan; Zhang, Hengchen; Ma, Cuihong; Han, Huijin; Xie, Meiran] East China Normal Univ, Sch Chem & Mol Engn, Shanghai 200241, Peoples R China published Disubstituted pendant-functionalized insulating-conductive block copolymer with enhanced dielectric and energy storage performance in 2019, Cited 47. The Name is Dimethyl 5-aminoisophthalate. Through research, I have a further understanding and discovery of 99-27-4.

Disubstituted pendant-functionalized block copolymer consisting of insulating polynorbornene and conductive polyacetylene segments was synthesized by tandem metathesis polymerization, and displayed high dielectric constant of 30 and low dielectric loss of about 0.04, while behaved bad film-forming property, which could be improved by incorporating polycyclooctene into polynorbomene backbone. The generated flexible block copolymer with well-defined nanostructure exhibited a relatively high dielectric constant of 23, very low dielectric loss of below 0.0035, and high stored and released energy densities up to 4.52 and 4.02 J cm(-3) at the electric field of 165 MV m(-1),respectively, accompanied with the charge-discharge efficiency of 90%. The enhanced dielectric and energy storage capability were attributed to high permanent dipole moment and the interfacial polarization derived from the unique nanomorphology of block copolymer.

Bye, fridends, I hope you can learn more about C10H11NO4, If you have any questions, you can browse other blog as well. See you lster.. Formula: C10H11NO4

Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Awesome and Easy Science Experiments about C13H8O2

Name: 6H-Benzo[c]chromen-6-one. Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.

An article Investigation of Lactones as Innovative Bio-Sourced Phase Change Materials for Latent Heat Storage WOS:000464951700020 published article about THERMAL-ENERGY STORAGE; ACID in [Ravotti, Rebecca; Fellmann, Oliver; Lardon, Nicolas; Fischer, Ludger J.; Stamatiou, Anastasia; Worlitschek, Joerg] Lucerne Univ Appl Sci & Arts, Competence Ctr Thermal Energy Storage TES, CH-6048 Horw, Switzerland; [Lardon, Nicolas] Max Planck Inst Med Res, D-69120 Heidelberg, Germany in 2019.0, Cited 25.0. Name: 6H-Benzo[c]chromen-6-one. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9

In the presented work, five bio-based and bio-degradable cyclic esters, i.e. lactones, have been investigated as possible phase change materials for applications in latent heat storage systems. Commercial natural lactones such as epsilon-caprolactone and gamma-valerolactone were easily purchased through chemical suppliers, while 1,2-campholide, oxa-adamantanone and dibenzochromen-6-one were synthesized through Baeyer-Villiger oxidation. The compounds were characterized with respect to attenuated total reflectance spectroscopy and gas chromatography coupled with mass spectroscopy, in order to confirm their chemical structures and identity. Subsequently, thermogravimetric analysis and differential scanning calorimetry were used to measure the phase change temperatures, enthalpies of fusion, degradation temperatures, as well to estimate the degree of supercooling. The lactones showed a wide range of phase change temperatures from -40 degrees C to 290 degrees C, making them a high interest for both low and high temperature latent heat storage applications, given the lack of organic phase change materials covering phase change temperature ranges below 0 degrees C and above 80 degrees C. However, low enthalpies of fusion, high degrees of supercooling and thermal degradations at low temperatures were registered for all samples, rendering them unsuitable as phase change materials.

Name: 6H-Benzo[c]chromen-6-one. Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Why do aromatic interactions matter of compound:6H-Benzo[c]chromen-6-one

SDS of cas: 2005-10-9. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Xu, P; Lopez-Rojas, P; Ritter, T or concate me.

SDS of cas: 2005-10-9. Authors Xu, P; Lopez-Rojas, P; Ritter, T in AMER CHEMICAL SOC published article about in [Xu, Peng; Lopez-Rojas, Priscila; Ritter, Tobias] Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany in 2021.0, Cited 49.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9

Abundant aromatic carboxylic acids exist in great structural diversity from nature and synthesis. To date, the synthetically valuable decarboxylative functionalization of benzoic acids is realized mainly by transition-metal-catalyzed decarboxylative cross couplings. However, the high activation barrier for thermal decarboxylative carbometalation that often requires 140 degrees C reaction temperature limits both the substrate scope as well as the scope of suitable reactions that can sustain such conditions. Numerous reactions, for example, decarboxylative fluorination that is well developed for aliphatic carboxylic acids, are out of reach for the aromatic counterparts with current reaction chemistry. Here, we report a conceptually different approach through a low-barrier photoinduced ligand to metal charge transfer (LMCT)-enabled radical decarboxylative carbometalation strategy, which generates a putative high-valent arylcopper(III) complex, from which versatile facile reductive eliminations can occur. We demonstrate the suitability of our new approach to address previously unrealized general decarboxylative fluorination of benzoic acids.

SDS of cas: 2005-10-9. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Xu, P; Lopez-Rojas, P; Ritter, T or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Awesome and Easy Science Experiments about 103-26-4

Recommanded Product: 103-26-4. Welcome to talk about 103-26-4, If you have any questions, you can contact Adnan, M; Siddiqui, AJ; Hamadou, WS; Patel, M; Ashraf, SA; Jamal, A; Awadelkareem, AM; Sachidanandan, M; Snoussi, M; De Feo, V or send Email.

Recommanded Product: 103-26-4. Authors Adnan, M; Siddiqui, AJ; Hamadou, WS; Patel, M; Ashraf, SA; Jamal, A; Awadelkareem, AM; Sachidanandan, M; Snoussi, M; De Feo, V in MDPI published article about in [Adnan, Mohd; Siddiqui, Arif Jamal; Hamadou, Walid Sabri; Jamal, Arshad; Snoussi, Mejdi] Univ Hail, Dept Biol, Coll Sci, Hail 2440, Saudi Arabia; [Patel, Mitesh] Veer Narmad South Gujarat Univ, Dept Biosci, Bapalal Vaidya Bot Res Ctr, Surat 395007, India; [Ashraf, Syed Amir; Awadelkareem, Amir Mahgoub] Univ Hail, Dept Clin Nutr, Coll Appl Medial Sci, Hail 2440, Saudi Arabia; [Sachidanandan, Manojkumar] Univ Hail, Dept Oral Radiol, Coll Dent, Hail 2440, Saudi Arabia; [Snoussi, Mejdi] Univ Monastir, High Inst Biotechnol, Lab Genet Biodivers & Valorisat Bioresources, Monastir 5000, Tunisia; [De Feo, Vincenzo] Univ Salerno, Dept Pharm, Via Giovanni Paolo II,132, I-84084 Salerno, Italy in 2021.0, Cited 89.0. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4

In this study, we investigated the bioactive potential (antibacterial and antioxidant), anticancer activity and detailed phytochemical analysis of Selaginella repanda (S. repanda) ethanolic crude extract for the very first time using different in vitro approaches. Furthermore, computer-aided prediction of pharmacokinetic properties and safety profile of the identified phytoconstituents were also employed in order to provide some useful insights for drug discovery. S. repanda, which is a rich source of potent natural bioactive compounds, showed promising antibacterial activity against the tested pathogenic bacteria (S. aureus, P. aeruginosa, E. coli and S. flexneri). The crude extract displayed favorable antioxidant activity against both 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 231.6 mu g/mL) and H2O2 (IC50 = 288.3 mu g/mL) molecules. S. repanda also showed favorable and effective anticancer activity against all three malignant cancer cells in a dose/time dependent manner. Higher activity was found against lung (A549) (IC50 = 341.1 mu g/mL), followed by colon (HCT-116) (IC50 = 378.8 mu g/mL) and breast (MCF-7) (IC50 = 428.3 mu g/mL) cancer cells. High resolution-liquid chromatography-mass spectrometry (HR-LC-MS) data of S. repanda crude extract revealed the presence of diverse bioactive/chemical components, including fatty acids, alcohol, sugar, flavonoids, alkaloids, terpenoids, coumarins and phenolics, which can be the basis and major cause for its bioactive potential. Therefore, achieved results from this study confirmed the efficacy of S. repanda and a prospective source of naturally active biomolecules with antibacterial, antioxidant and anticancer potential. These phytocompounds alone with their favorable pharmacokinetics profile suggests good lead and efficiency of S. repanda with no toxicity risks. Finally, further in vivo experimental investigations can be promoted as probable candidates for various therapeutic functions, drug discovery and development.

Recommanded Product: 103-26-4. Welcome to talk about 103-26-4, If you have any questions, you can contact Adnan, M; Siddiqui, AJ; Hamadou, WS; Patel, M; Ashraf, SA; Jamal, A; Awadelkareem, AM; Sachidanandan, M; Snoussi, M; De Feo, V or send Email.

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Awesome and Easy Science Experiments about 2005-10-9

HPLC of Formula: C13H8O2. Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.

An article Visible-Light-Induced Arene C(sp (2) )-H Lactonization Promoted by DDQ and tert -Butyl Nitrite WOS:000509900900010 published article about CROSS-COUPLING REACTIONS; C-H LACTONIZATION; DEHYDROGENATIVE LACTONIZATION; BOND FUNCTIONALIZATION; PHOTOREDOX CATALYSIS; AEROBIC OXIDATION; CARBOXYLIC-ACIDS; SCHOLL REACTION; METAL-FREE; C(SP(2))-H in [Wang, Yiqing; Li, Meichao; Hu, Xinquan; Hu, Baoxiang; Jin, Liqun; Sun, Nan; Shen, Zhenlu] Zhejiang Univ Technol, Coll Chem Engn, Hangzhou 310014, Peoples R China; [Wang, Shengpeng; Chen, Bajin] Transfar Zhilian Co Ltd, Xiaoshan Econ & Technol Dev Zone, Hangzhou 311215, Peoples R China in 2020.0, Cited 84.0. HPLC of Formula: C13H8O2. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9

A visible-light photocatalytic aerobic oxidative lactonization of arene C(sp (2) )-H bonds proceeds in the presence of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and tert -butyl nitrite (TBN). Under the optimized conditions, a range of 2-arylbenzoic acids is converted into the corresponding benzocoumarin derivatives in moderate to excellent yields. This method is characterized by its atom economy, mild reaction conditions, the use of a green oxidant and metal-free catalysis.

HPLC of Formula: C13H8O2. Bye, fridends, I hope you can learn more about C13H8O2, If you have any questions, you can browse other blog as well. See you lster.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Chemical Properties and Facts of 6H-Benzo[c]chromen-6-one

Welcome to talk about 2005-10-9, If you have any questions, you can contact Shirase, S; Tamaki, S; Shinohara, K; Hirosawa, K; Tsurugi, H; Satoh, T; Mashima, K or send Email.. Quality Control of 6H-Benzo[c]chromen-6-one

Quality Control of 6H-Benzo[c]chromen-6-one. Shirase, S; Tamaki, S; Shinohara, K; Hirosawa, K; Tsurugi, H; Satoh, T; Mashima, K in [Shirase, Satoru; Tamaki, Sota; Shinohara, Koichi; Tsurugi, Hayato; Mashima, Kazushi] Osaka Univ, Grad Sch Engn Sci, Dept Chem, Toyonaka, Osaka 5608531, Japan; [Hirosawa, Keishi; Satoh, Tetsuya] Osaka City Univ, Grad Sch Sci, Dept Chem, Osaka 5588585, Japan published Cerium(IV) Carboxylate Photocatalyst for Catalytic Radical Formation from Carboxylic Acids: Decarboxylative Oxygenation of Aliphatic Carboxylic Acids and Lactonization of Aromatic Carboxylic Acids in 2020.0, Cited 56.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

We found that in situ generated cerium(IV) carboxylate generated by mixing the precursor Ce((OBu)-Bu-t)(4) with the corresponding carboxylic acids served as efficient photocatalysts for the direct formation of carboxyl radicals from carboxylic acids under blue light-emitting diodes (blue LEDs) irradiation and air, resulting in catalytic decarboxylative oxygenation of aliphatic carboxylic acids to give C-O bond-forming products such as aldehydes and ketones. Control experiments revealed that hexanuclear Ce(IV) carboxylate clusters initially formed in the reaction mixture and the ligand-to-metal charge transfer nature of the Ce(IV) carboxylate clusters was responsible for the high catalytic performance to transform the carboxylate ligands to the carboxyl radical. In addition, the Ce(IV) carboxylate cluster catalyzed direct lactonization of 2-isopropylbenzoic acid to produce the corresponding peroxy lactone and gamma-lactone via intramolecular 1,5-hydrogen atom transfer (1,5-HAT).

Welcome to talk about 2005-10-9, If you have any questions, you can contact Shirase, S; Tamaki, S; Shinohara, K; Hirosawa, K; Tsurugi, H; Satoh, T; Mashima, K or send Email.. Quality Control of 6H-Benzo[c]chromen-6-one

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Why Are Children Getting Addicted To C10H10O2

Bye, fridends, I hope you can learn more about C10H10O2, If you have any questions, you can browse other blog as well. See you lster.. Safety of Methyl 3-phenyl-2-propenoate

Safety of Methyl 3-phenyl-2-propenoate. In 2019.0 NANOSCALE ADV published article about SELECTIVE OXIDATION; NITROARENES; CONVERSION; OXYGEN in [Gopi, Elumalai; Gravel, Edmond; Doris, Eric] Univ Paris Saclay, CEA, SCBM, F-91191 Gif Sur Yvette, France in 2019.0, Cited 34.0. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4.

Gold nanoparticles supported on carbon nanotubes were shown to efficiently catalyze the oxidation of alcohols to methyl esters under mild and selective reaction conditions. The reaction works with low catalyst loadings and the nanohybrid could be readily recycled and reused.

Bye, fridends, I hope you can learn more about C10H10O2, If you have any questions, you can browse other blog as well. See you lster.. Safety of Methyl 3-phenyl-2-propenoate

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Awesome and Easy Science Experiments about C10H10O2

Bye, fridends, I hope you can learn more about C10H10O2, If you have any questions, you can browse other blog as well. See you lster.. Category: esters-buliding-blocks

Category: esters-buliding-blocks. Authors Wang, ZJ; Chen, XY; Wu, L; Wong, JJ; Liang, Y; Zhao, Y; Houk, KN; Shi, ZZ in WILEY-V C H VERLAG GMBH published article about in [Wang, Zheng-Jun; Wu, Lei; Liang, Yong; Zhao, Yue; Shi, Zhuangzhi] Nanjing Univ, Sch Chem & Chem Engn, Chem & Biomed Innovat Ctr ChemBIC, State Key Lab Coordinat Chem, Nanjing 210093, Peoples R China; [Chen, Xiangyang; Wong, Jonathan J.; Houk, Kendall N.] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA in 2021.0, Cited 68.0. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4

Robust strategies to enable the rapid construction of complex organoboronates in selective, practical, low-cost, and environmentally friendly modes remain conspicuously underdeveloped. Here, we develop a general strategy for the site-selective C-H borylation of pyrroles by using only BBr3 directed by pivaloyl groups, avoiding the use of any metal. The site-selectivity is generally dominated by chelation and electronic effects, thus forming diverse C2-borylated pyrroles against the steric effect. The formed products can readily engage in downstream transformations, enabling a step-economic process to access drugs such as Lipitor. DFT calculations (wB97X-D) demonstrate the preferred positional selectivity of this reaction.

Bye, fridends, I hope you can learn more about C10H10O2, If you have any questions, you can browse other blog as well. See you lster.. Category: esters-buliding-blocks

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics