Awesome Chemistry Experiments For C10H10O2

Computed Properties of C10H10O2. About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Verma, A; Grams, RJ; Rastatter, BP; Santos, WL or concate me.

Computed Properties of C10H10O2. In 2019.0 TETRAHEDRON published article about CROSS-COUPLING REACTIONS; ACETYLENIC ESTERS; EFFICIENT SYNTHESIS; REGIO; REAGENTS; BORON; HYDROBORATION; ACCESS in [Verma, Astha; Grams, R. Justin; Rastatter, Brett P.; Santos, Webster L.] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA in 2019.0, Cited 24.0. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4.

A method for the semi-reduction of alkynoic acids through an alpha-borylation and subsequent protodeborylation mechanism has been developed. The transition metal-free protocol is achieved through the activation of bis(pinacolato)diboron by an in situ generated carboxylate moiety yielding aryl acrylic acids. Our studies demonstrate an unprecedented dual role for the carboxylate anion that involves the activation of the diboron reagent and a directing effect in the alpha-borylation. (C) 2019 Elsevier Ltd. All rights reserved.

Computed Properties of C10H10O2. About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Verma, A; Grams, RJ; Rastatter, BP; Santos, WL or concate me.

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Why do aromatic interactions matter of compound:Methyl 2,2-dimethoxyacetate

Quality Control of Methyl 2,2-dimethoxyacetate. About Methyl 2,2-dimethoxyacetate, If you have any questions, you can contact Li, ZM; Long, JX; Zeng, Q; Wu, YH; Cao, ML; Liu, SJ; Li, XH or concate me.

Recently I am researching about SUGARCANE BAGASSE; DIETHYL MALEATE; DEPOLYMERIZATION; EFFICIENT; DELIGNIFICATION; OXIDATION; CLEAVAGE; MONOMERS; BIOMASS; PHENOL, Saw an article supported by the Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21736003, 21690083]; Science and Technology Program of Guangzhou City [201804020014]; Guangdong Province, China [2020A0505100008, 2017B090903003]; Key Research and Development Program of Jiangxi Province [20202BBGL73118]. Quality Control of Methyl 2,2-dimethoxyacetate. Published in AMER CHEMICAL SOC in WASHINGTON ,Authors: Li, ZM; Long, JX; Zeng, Q; Wu, YH; Cao, ML; Liu, SJ; Li, XH. The CAS is 89-91-8. Through research, I have a further understanding and discovery of Methyl 2,2-dimethoxyacetate

Catalytic conversion of lignin to versatile aromatic compounds is attracting increasing attention. However, it is highly desirable but challenging to produce a specific chemical with high yield through lignin depolymerization in a one-pot process because of the complex structure of the lignin molecule (mainly composed of H, G, and S units). In this study, a series of metal-based deep eutectic solvents (M-DESs) were prepared and used for the catalytic tailoring of lignin H units to produce value-added methyl p-hydroxycinnamate (MPC). In particular, M-DES ChCl[FeCl3](2) showed excellent catalytic performance for the selective production of MPC as the sole product with high yield and selectivity (105.8 mg g(-1) and 74.1%, respectively). Extensive characterizations using 2D HSQC NMR, C-13 NMR, and GPC demonstrated that MPC was obtained from the selective tailoring of p-coumaric acid (pCA) units via the cleavage of ester bonds in lignin. Furthermore, M-DES ChCl[FeCl3](2) also exhibited efficiency to other herbaceous lignins, and showed excellent recyclability. Therefore, this work provides an effective strategy for the valorization of lignin.

Quality Control of Methyl 2,2-dimethoxyacetate. About Methyl 2,2-dimethoxyacetate, If you have any questions, you can contact Li, ZM; Long, JX; Zeng, Q; Wu, YH; Cao, ML; Liu, SJ; Li, XH or concate me.

Reference:
Patent; U C B, Societe Anonyme; US4041077; (1977); A;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

The Shocking Revelation of C13H8O2

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Li, J; Yuan, Y; Bao, XZ; Sang, TZ; Yang, J; Huo, CD or concate me.. SDS of cas: 2005-10-9

An article Visible-Light-Induced Intermolecular Oxyimination of Alkenes WOS:000649477300091 published article about AMINOHYDROXYLATION; OLEFINS in [Li, Jun; Yuan, Yong; Bao, Xiazhen; Sang, Tongzhi; Yang, Jie; Huo, Congde] Northwest Normal Univ, Gansu Int Sci & Technol Cooperat Base Water Reten, Lanzhou 730070, Gansu, Peoples R China; [Li, Jun; Yuan, Yong; Bao, Xiazhen; Sang, Tongzhi; Yang, Jie; Huo, Congde] Northwest Normal Univ, Minist Educ, Key Lab Ecoenvironm Related Polymer Mat, Lanzhou 730070, Gansu, Peoples R China; [Li, Jun; Yuan, Yong; Bao, Xiazhen; Sang, Tongzhi; Yang, Jie; Huo, Congde] Northwest Normal Univ, Coll Chem & Chem Engn, Lanzhou 730070, Gansu, Peoples R China in 2021.0, Cited 36.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9. SDS of cas: 2005-10-9

An intermolecular vicinal O-N difunctionalization reaction of olefins with oxime esters through energy transfer catalysis has been developed.

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Li, J; Yuan, Y; Bao, XZ; Sang, TZ; Yang, J; Huo, CD or concate me.. SDS of cas: 2005-10-9

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Now Is The Time For You To Know The Truth About 103-26-4

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Patel, A; Patel, J or concate me.. Name: Methyl 3-phenyl-2-propenoate

Recently I am researching about POT OXIDATIVE ESTERIFICATION; IONIC LIQUID; MULTICOMPONENT REACTIONS; SELECTIVE OXIDATION; HETEROGENEOUS CATALYSTS; BIGINELLI COMPOUNDS; AEROBIC OXIDATION; CESIUM SALT; KEGGIN; CHEMISTRY, Saw an article supported by the Science and Engineering Research Board (SERB), New Delhi [EMR/2016/005718]. Published in ROYAL SOC CHEMISTRY in CAMBRIDGE ,Authors: Patel, A; Patel, J. The CAS is 103-26-4. Through research, I have a further understanding and discovery of Methyl 3-phenyl-2-propenoate. Name: Methyl 3-phenyl-2-propenoate

A Ni salt of phosphomolybdic acid (NiHPMA) was synthesized and characterized by various physico-chemical techniques such as EDX, UV-Visible spectroscopy, FT-IR, Raman spectroscopy and XPS. FT-IR and Raman spectroscopy confirm the presence of Ni as a counter cation while UV-Visible and XPS studies to confirm the presence of Ni(ii) in the catalyst. The catalyst was evaluated for its bi-functional activity towards the tandem conversion of benzaldehyde to ethyl benzoate and it was found that very small amounts of Ni (2.64 x 10(-3)mmol) enhance the selectivity towards benzoate. A detailed mechanistic study was carried out by UV-Visible and Raman spectroscopy to confirm that both intermediate species, Mo-peroxo and Ni-oxo, are responsible for higher selectivity towards esters. Further, a study to determine the effect of addenda atoms (heteropoly acid) was also carried out. The catalyst was also found to be viable for a number of aldehydes under optimized conditions.

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Patel, A; Patel, J or concate me.. Name: Methyl 3-phenyl-2-propenoate

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Machine Learning in Chemistry about Dimethyl 5-aminoisophthalate

About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Panigrahi, A; Sahu, BP; Mandani, S; Nayak, D; Giri, S; Sarma, TK or concate me.. Formula: C10H11NO4

Formula: C10H11NO4. In 2019 J PHOTOCH PHOTOBIO A published article about AGGREGATION-INDUCED EMISSION; CONJUGATED POLYMER NANOPARTICLES; INTRAMOLECULAR EXCIMER FORMATION; LIGHT-UP PROBE; PICRIC ACID; TUNABLE EMISSION; TETRAPHENYLETHYLENE; EFFICIENCY; SENSORS; SIZE in [Panigrahi, Abhiram; Mandani, Sonam; Sarma, Tridib K.] Indian Inst Technol Indore, Discipline Chem, Khandwa Rd, Indore 453552, Madhya Pradesh, India; [Sahu, Basanta P.; Nayak, Debasis] Indian Inst Technol Indore, Ctr Biosci & Biomed Engn, Khandwa Rd, Indore 453552, Madhya Pradesh, India; [Giri, Santanab] Haldia Inst Technol, Sch Appl Sci & Humanities, Haldia 721657, India in 2019, Cited 66. The Name is Dimethyl 5-aminoisophthalate. Through research, I have a further understanding and discovery of 99-27-4.

Development of organic nanoparticles with high fluorescence, good biocompatibility along with strong resistance to photobleaching through simple synthetic routes is important for diverse applications such as sensing and bioimaging. Herein, we present the development of a pyrene excimer nanoaggregate which shows aggregation induced emission (AIE) effect in a solvent mixture of THE and water. The pyrene based fluorescent probe, dimethyl-5-(pyren-1-ylmethyleneamino)isophthalate (5-DP) was synthesized through a simple single step condensation reaction from inexpensive reagents. The photophysical studies of nanoaggregated system further corroborates the AIE active behavior of 5-DP probe at different water fractions (f(w) = 0% to 90%), where the hydrogen bonding interaction between imine and water molecules led to suppression of photoinduced electron transfer (PET) inducing significant enhancement in fluorescence. The highly photostable nanoaggregates were explored as a selective fluorescence turn off sensor for phenolic nitroaromatics and the chemo-selectivity was highly pronounced for 2,4,6-trinitrophenol (picric acid), that showed efficient quenching in aqueous as well as solid phase, with a detection limit of 10 nM in aqueous medium. The quenching efficiency of the nanoaggregates can be ascribed to a combination of factors including efficient fluorescence resonance energy transfer, inner filter effect and coulombic interaction between picric acid and the aggregated probe molecules. Further, random aggregation of the pyrene derivative could be controlled for the formation of fluorescent spherical nanoparticles using Pluoronics P-123 block copolymers as encapsulating agents. The resulting composite could be used as a neoteric cell imaging probe with significantly less cytotoxicity, thus showing their potential biological applications.

About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Panigrahi, A; Sahu, BP; Mandani, S; Nayak, D; Giri, S; Sarma, TK or concate me.. Formula: C10H11NO4

Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Archives for Chemistry Experiments of 103-25-3

Recommanded Product: 103-25-3. About Methyl 3-phenylpropionate, If you have any questions, you can contact Fiorio, JL; Braga, AH; Guedes, CLB; Rossi, LM or concate me.

Recommanded Product: 103-25-3. In 2019.0 ACS SUSTAIN CHEM ENG published article about HETEROPOLY ACID; OXIDATIVE ESTERIFICATION; CARBON NITRIDE; FATTY-ACIDS; OLEIC-ACID; ALCOHOLS; NANOPARTICLES; DEHYDRATION; PERFORMANCE; ALDEHYDES in [Fiorio, Jhonatan Luiz; Braga, Adriano Henrique; Rossi, Liane Marcia] Univ Sao Paulo, Inst Quim, Dept Quim Fundamental, Av Prof Lineu Prestes 748, BR-05508000 Sao Paulo, SP, Brazil; [Fiorio, Jhonatan Luiz; Barbosa Guedes, Carmen Luisa] Univ Estadual Londrina, Dept Quim, Ctr Ciencias Exatas, BR-86057970 Londrina, PR, Brazil in 2019.0, Cited 69.0. The Name is Methyl 3-phenylpropionate. Through research, I have a further understanding and discovery of 103-25-3.

Solid acid catalysts are environmentally friendly alternatives to the use of mineral acids in a range of applications, including the esterification of carboxylic acids. Here, a phosphorus- and nitrogen-doped, carbon-modified, fully heterogeneous solid acid catalyst was prepared by pyrolysis of a mixture of melamine and tungstophosphoric acid at 250, 500, and 750 degrees C under a nitrogen atmosphere provided. The structure of the different catalysts was evaluated by surface area measurements, XRD, XPS, Raman spectroscopy, elemental analysis, and electron microscopies. Pyrolysis at 500 degrees C created complex solid materials with larger surface area and significantly higher acidity, which can be attributed to WO3 formation on a heteroatomic (N,P)-carbon structure. The 500 degrees C-treated heterogeneous catalysts showed remarkably better activity for esterification of palmitic acid and were thus applied in the esterification of a broad range of carboxylic acids with good overall yields. Furthermore, the solid acid catalyst can be easily recovered and recycled up to eight times without significant loss of activity with no leaching of species to the reaction mixture.

Recommanded Product: 103-25-3. About Methyl 3-phenylpropionate, If you have any questions, you can contact Fiorio, JL; Braga, AH; Guedes, CLB; Rossi, LM or concate me.

Reference:
Patent; SANOFI; US2011/294788; (2011); A1;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

You Should Know Something about 2005-10-9

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Gini, A; Rigotti, T; Perez-Ruiz, R; Uygur, M; Mas-Balleste, R; Corral, I; Martinez-Fernandez, L; O’Shea, VAD; Mancheno, OG; Aleman, J or concate me.. HPLC of Formula: C13H8O2

Authors Gini, A; Rigotti, T; Perez-Ruiz, R; Uygur, M; Mas-Balleste, R; Corral, I; Martinez-Fernandez, L; O’Shea, VAD; Mancheno, OG; Aleman, J in WILEY-V C H VERLAG GMBH published article about PHOTOINDUCED ELECTRON-TRANSFER; ANTI-MARKOVNIKOV ADDITION; 9-MESITYL-10-METHYLACRIDINIUM ION; VISIBLE-LIGHT; OXYGENATION; DERIVATIVES; ACR(+)-MES; COMPLEXES; EVOLUTION; OXIDATION in [Gini, Andrea; Rigotti, Thomas; Aleman, Jose] Univ Autonoma Madrid, Fac Ciencias, Organ Chem Dept, Modulo 1,Calle Francisco Tomcis y Valiente 7, E-28049 Madrid, Spain; [Perez-Ruiz, Raul; de la Pena O’Shea, Victor A.] IMDEA Energy, Photoactivated Proc Unit, Av Ramon de la Sagra 3, Madrid 28935, Spain; [Uygur, Mustafa; Mancheno, Olga Garcia] Univ Munster, Organ Chem Inst, Corrensstr 40, D-48149 Munster, Germany; [Mas-Balleste, Ruben] Univ Autonoma Madrid, Fac Ciencias, Inorgan Chem Dept, Modulo 7,Calle Francisco Tomcis y Valiente 7, E-28049 Madrid, Spain; [Mas-Balleste, Ruben; Corral, Ines; Aleman, Jose] Univ Autonoma Madrid, Fac Ciencias, Inst Adv Res Chem Sci IAdChem, Calle Francisco Tomcis y Valiente 7, E-28049 Madrid, Spain; [Corral, Ines; Martinez-Fernandez, Lara] Univ Autonoma Madrid, Fac Ciencias, Condensed Matter Phys Ctr IFIMAC, Calle Francisco Tomcis y Valiente 7, E-28049 Madrid, Spain; [Corral, Ines] Univ Autonoma Madrid, Fac Ciencias, Chem Dept, Modulo 13,Calle Francisco Tomcis y Valiente 7, E-28049 Madrid, Spain in 2019.0, Cited 47.0. HPLC of Formula: C13H8O2. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9

A study on C9-imide acridinium photocatalysts with enhanced photoredox catalytic activity with respect to the well-established C9-mesityl acridinium salt is presented. The differences observed rely on the diverse accessibility of singlet charge-transfer excited states, which have been proven by CASPT2/CASSCF calculations, fluorescence and quenching studies.

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Gini, A; Rigotti, T; Perez-Ruiz, R; Uygur, M; Mas-Balleste, R; Corral, I; Martinez-Fernandez, L; O’Shea, VAD; Mancheno, OG; Aleman, J or concate me.. HPLC of Formula: C13H8O2

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Our Top Choice Compound:2005-10-9

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Nakamura, M; Togo, H or concate me.. Recommanded Product: 6H-Benzo[c]chromen-6-one

An article FACILE PREPARATION OF 3,4-BENZOCOUMARINS FROM 2-ARYLBENZOIC ACIDS WITH NCS AND NaI WOS:000573109600003 published article about O BOND FORMATION; CARBOXYLIC-ACIDS; BENZOCOUMARINS; LACTONIZATION; CYCLIZATION; ACCESS; NIS in [Nakamura, Momoko; Togo, Hideo] Chiba Univ, Grad Sch Sci, Inage Ku, Yayoi Cho 1-33, Chiba 2638522, Japan in 2020.0, Cited 31.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9. Recommanded Product: 6H-Benzo[c]chromen-6-one

Treatment of 2-arylbenzoic acids with N-chlorosuccinimide (NCS) and NaI at 70 degrees C under fluorescent lighting condition gave the corresponding 3,4-benzocoumarins in good yields under transition-metal-free condition. It was found that the reactivity of NCS with NaI for the formation of 3,4-benzocoumarins from 2-arylbenzoic acids was as high as that with NIS. Thus, the formation of carboxyl radicals and their cyclization onto an aromatic ring from 2-arylbenzoic acids with much less expensive NCS and NaI, than NIS could be successfully carried out to form 3,4-benzocoumarins.

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Nakamura, M; Togo, H or concate me.. Recommanded Product: 6H-Benzo[c]chromen-6-one

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Final Thoughts on Chemistry for C10H10O2

Recommanded Product: Methyl 3-phenyl-2-propenoate. About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Chen, JJ; Xu, JC; Zhou, Y; Xie, SG; Gao, F; Xu, XF; Xu, XH; Jin, Z or concate me.

Chen, JJ; Xu, JC; Zhou, Y; Xie, SG; Gao, F; Xu, XF; Xu, XH; Jin, Z in [Chen, Jingjing; Xu, Jiancong; Xie, Shuguang; Gao, Feng; Xu, Xiaohua; Jin, Zhong] Nankai Univ, Coll Chem, State Key Lab, Tianjin 300071, Peoples R China; [Chen, Jingjing; Xu, Jiancong; Xie, Shuguang; Gao, Feng; Xu, Xiaohua; Jin, Zhong] Nankai Univ, Coll Chem, Inst Elementoorgan Chem, Tianjin 300071, Peoples R China; [Zhou, Yu; Xu, Xiufang] Nankai Univ, Coll Chem, Minist Educ, Key Lab Adv Energy Mat Chem, Tianjin 300071, Peoples R China published Sequential ortho-C-H and ipso-C-O Functionalization Using a Bifunctional Directing Group in 2019.0, Cited 61.0. Recommanded Product: Methyl 3-phenyl-2-propenoate. The Name is Methyl 3-phenyl-2-propenoate. Through research, I have a further understanding and discovery of 103-26-4.

Design of C-H activation directing groups that can serve as electrophiles for subsequent cross-coupling significantly improves the step economy of synthetic applications of directed C-H functionalization. Through using a well-defined bifunctional template, palladium-catalyzed ortho-C-H alkenylation and arylation of benzylic alcohols was achieved via an end-on nitrile-embedded 12-membered macrocyclic transition state. Thereafter, the directing template is used as a handle for palladium-catalyzed ipso-C-O cross-coupling to provide functionalized diarylmethanes.

Recommanded Product: Methyl 3-phenyl-2-propenoate. About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Chen, JJ; Xu, JC; Zhou, Y; Xie, SG; Gao, F; Xu, XF; Xu, XH; Jin, Z or concate me.

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

The important role of 6H-Benzo[c]chromen-6-one

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Rumyantsev, AV; Pichugov, AV; Bushkov, NS; Aleshin, DY; Strelkova, TV; Lependina, OL; Zhizhko, PA; Zarubin, DN or concate me.. Recommanded Product: 2005-10-9

Recommanded Product: 2005-10-9. Authors Rumyantsev, AV; Pichugov, AV; Bushkov, NS; Aleshin, DY; Strelkova, TV; Lependina, OL; Zhizhko, PA; Zarubin, DN in ROYAL SOC CHEMISTRY published article about in [Rumyantsev, Andrey, V; Pichugov, Andrey, V; Bushkov, Nikolai S.; Aleshin, Dmitry Yu; Strelkova, Tatyana, V; Lependina, Olga L.; Zhizhko, Pavel A.; Zarubin, Dmitry N.] Russian Acad Sci, AN Nesmeyanov Inst Organoelement Cpds, Vavilov Str 28, Moscow 119991, Russia; [Rumyantsev, Andrey, V; Bushkov, Nikolai S.] Moscow MV Lomonosov State Univ, Dept Chem, Vorobevy Gory 1, Moscow 119991, Russia; [Pichugov, Andrey, V; Aleshin, Dmitry Yu] D Mendeleev Univ Chem Technol Russia, Higher Chem Coll, Miusskaya Sq 9, Moscow 125047, Russia in 2021.0, Cited 33.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9

We report the first examples of direct imidation of lactones giving the corresponding cyclic imidates via oxo/imido heterometathesis with N-sulfinylamines catalysed by a well-defined silica-supported Ti imido complex.

About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Rumyantsev, AV; Pichugov, AV; Bushkov, NS; Aleshin, DY; Strelkova, TV; Lependina, OL; Zhizhko, PA; Zarubin, DN or concate me.. Recommanded Product: 2005-10-9

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics