What unique challenges do researchers face in 6H-Benzo[c]chromen-6-one

SDS of cas: 2005-10-9. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Chen, XY; Zhou, XK; Wang, JC; Dong, GB or concate me.

In 2020.0 ACS CATAL published article about TRANSITION-METAL-COMPLEXES; KETONE ALPHA-ALKYLATION; ASYMMETRIC HYDROGENATION; BORONIC ESTERS; SIMPLE OLEFINS; VINYL ETHERS; RHODIUM; HYDROARYLATION; DIPHOSPHINES; HYDROFORMYLATION in [Chen, Xiao-Yang; Zhou, Xukai; Wang, Jianchun; Dong, Guangbin] Univ Chicago, Dept Chem, Chicago, IL 60637 USA in 2020.0, Cited 70.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9. SDS of cas: 2005-10-9

In contrast to the plethora of large-bite-angle bisphosphine ligands available to transition-metal catalysis, the development of small-bite-angle bisphosphine ligands has suffered from the limited structural variations accessible on their single-atom-containing backbones. Herein, we report the design and applications of a discrete very small bite-angle bisphosphine ligand, namely, FMPhos. Featuring a fluorene-methylene unit appended on the single-carbon linker, the ligand harbors an unusually rigid backbone that presumably stabilizes its complexation with transition metals during catalysis. Compared with the known dppm ligand, it exhibited superior reactivity and regioselectivity in a number of alkene hydrofunctionalization reactions, catalyzed by iridium and rhodium.

SDS of cas: 2005-10-9. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Chen, XY; Zhou, XK; Wang, JC; Dong, GB or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Final Thoughts on Chemistry for 99-27-4

Safety of Dimethyl 5-aminoisophthalate. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Liu, BW; Zhao, HB; Chen, L; Chen, L; Wang, XL; Wang, YZ or concate me.

Authors Liu, BW; Zhao, HB; Chen, L; Chen, L; Wang, XL; Wang, YZ in ELSEVIER SCI LTD published article about in [Liu, Bo-Wen; Zhao, Hai-Bo; Chen, Lin; Chen, Li; Wang, Xiu-Li; Wang, Yu-Zhong] Sichuan Univ, Collaborat Innovat Ctr Ecofriendly & Fire Safety, Natl Engn Lab Ecofriendly Polymer Mat Sichuan, Sch Chem Engn,State Key Lab Polymer Mat Engn,MOE, Chengdu 610064, Peoples R China in 2021, Cited 60. Safety of Dimethyl 5-aminoisophthalate. The Name is Dimethyl 5-aminoisophthalate. Through research, I have a further understanding and discovery of 99-27-4

Conventional methods to improve the flame retardancy of polymeric materials usually involve the use of flame-retardant elements such as Cl, Br and P, however, their use may bring more smoke and toxic gases hazards, and more importantly, cause non-negligible environmental and ecological problems. In this work, we put forward a novel green strategy that eliminates the use of any conventional flame-retardant elements to improve the flame retardancy by incorporating a synergistically cross-linkable structure (named PN) containing phenylacetylene and phenylimide groups. The resulting PN copolymer exhibited an excellent 55% lower smoke release rate and 68% lower heat release rate than the pure polymer, as well as a high LOI value of 32% and UL-94 V-0 rating with excellent anti-dripping performance. TG-DSC, rheological and FTIR results proved the high cross-linking ability of the PN copolymer due to the synergistic cross-linking effect between the imide-isoimide rearrangement of phenylimide and the self-cross-linking of phenylacetylene. The SEM, Raman and Py-GC/MS results further upheld the condensed phase flame-retardant mechanism. This eco-friendly synergistic cross-linking strategy provided new perspective for the design and synthesis of polymeric materials with excellent flame retardancy, great anti-dripping performance, and low release of heat, smoke, and toxic gas.

Safety of Dimethyl 5-aminoisophthalate. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Liu, BW; Zhao, HB; Chen, L; Chen, L; Wang, XL; Wang, YZ or concate me.

Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

An update on the compound challenge: Dimethyl 5-aminoisophthalate

HPLC of Formula: C10H11NO4. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Yu, YE; Wang, YH; Yan, H; Lu, J; Liu, HT; Li, YW; Wang, SN; Li, DC; Dou, JM; Yang, L; Zhou, Z or concate me.

HPLC of Formula: C10H11NO4. Recently I am researching about METAL-ORGANIC FRAMEWORK; SELECTIVE DETECTION; FLUORESCENT-PROBE; DICARBOXYLATE LIGANDS; FAST-RESPONSE; FE(III) IONS; CR(VI) IONS; MOF; SENSOR; ACID, Saw an article supported by the National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC) [21571092, 21771095]; Natural Science Foundation of Shandong ProvinceNatural Science Foundation of Shandong Province [ZR2012BQ023, ZR2017JL013]; Youth Innovation Team of Shandong Colleges and Universities [2019KJC027]. Published in AMER CHEMICAL SOC in WASHINGTON ,Authors: Yu, YE; Wang, YH; Yan, H; Lu, J; Liu, HT; Li, YW; Wang, SN; Li, DC; Dou, JM; Yang, L; Zhou, Z. The CAS is 99-27-4. Through research, I have a further understanding and discovery of Dimethyl 5-aminoisophthalate

By using the reduced Schiff base tricarboxylate ligand H(3)cip, one novel 3D Cd-based coordination polymer (Cd-CP) with the formula [Cd(Hcip)(bpea)(0.5)(H2O)](n) (H(3)cip = 5-(3-carboxybenzylamino)isophthalic acid, bpea = 1,2-bis(4-pyridyl)ethane) has been solvothermally synthesized. The prepared Cd-CP possesses a 4-connected CdSO4 net based on dinuclear {Cd-2} units. Luminescence measurements revealed that the complex exhibited ratiometric turn-on luminescence responses toward Al3+ and Cr3+ with a significant color change, which could be easily distinguished by the naked eye under ultraviolet light. Cd-CP can also respond to Fe3+ through a turn-off mechanism. Interestingly, the luminescence quenched by Fe3+@Cd-CP can be recovered and increased significantly by adding some competitive Al3+, while Cr3+ can only marginally increase the luminescence intensity of Fe3+@Cd-CP. Moreover, the detection of the three aforementioned metal ions can be realized by using Cd-CP-coated test papers, extending the potential application regions of the reported material to point-of-care tests and environmental field studies.

HPLC of Formula: C10H11NO4. About Dimethyl 5-aminoisophthalate, If you have any questions, you can contact Yu, YE; Wang, YH; Yan, H; Lu, J; Liu, HT; Li, YW; Wang, SN; Li, DC; Dou, JM; Yang, L; Zhou, Z or concate me.

Reference:
Patent; ASTRA ZENECA AB; NPS PHARMACEUTICALS, INC.; WO2004/14881; (2004); A2;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Downstream Synthetic Route Of 2005-10-9

HPLC of Formula: C13H8O2. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Bhunia, SK; Das, P; Nandi, S; Jana, R or concate me.

An article Carboxylation of Aryl Triflates with CO2 Merging Palladium and Visible-Light-Photoredox Catalysts WOS:000473116000050 published article about C-H FUNCTIONALIZATION; CARBON-DIOXIDE; DUAL CATALYSIS; DRIVEN CARBOXYLATION; UNACTIVATED PRIMARY; BUILDING-BLOCK; BONDS; HALIDES; ACIDS; HYDROCARBOXYLATION in [Bhunia, Samir Kumar; Das, Pritha; Nandi, Shantanu; Jana, Ranjan] CSIR Indian Inst Chem Biol, Organ & Med Chem Div, 4 Raja SC Mullick Rd, Kolkata 700032, W Bengal, India; [Bhunia, Samir Kumar; Jana, Ranjan] Acad Sci & Innovat Res AcSIR, Kolkata 700032, W Bengal, India in 2019.0, Cited 88.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9. HPLC of Formula: C13H8O2

We report herein a visible-light-promoted, highly practical carboxylation of readily accessible aryl triflates at ambient temperature and a balloon pressure of CO2 by the combined use of palladium and photoredox Ir(III) catalysts. Strikingly, the stoichiometric metallic reductant is replaced by a nonmetallic amine reductant providing an environmentally benign carboxylation process. In addition, one-pot synthesis of a carboxylic acid directly from phenol and modification of estrone and concise synthesis of pharmaceutical drugs adapalene and bexarotene have been accomplished via late-stage carboxylation reaction. Furthermore, a parallel decarboxylation-carboxylation reaction has been demonstrated in an H-type closed vessel that is an interesting concept for the strategic sector. Spectroscopic and spectroelectrochemical studies indicated electron transfer from the Ir(III)/DIPEA combination to generate aryl carboxylate and Pd(0) for catalytic turnover.

HPLC of Formula: C13H8O2. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Bhunia, SK; Das, P; Nandi, S; Jana, R or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Some scientific research about Methyl 3-phenyl-2-propenoate

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Terao, Y; Satoh, K; Kamigaito, M or concate me.. Name: Methyl 3-phenyl-2-propenoate

I found the field of Biochemistry & Molecular Biology; Chemistry; Polymer Science very interesting. Saw the article Controlled Radical Copolymerization of Cinnamic Derivatives as Renewable Vinyl Monomers with Both Acrylic and Styrenic Substituents: Reactivity, Regioselectivity, Properties, and Functions published in 2019.0. Name: Methyl 3-phenyl-2-propenoate, Reprint Addresses Satoh, K; Kamigaito, M (corresponding author), Nagoya Univ, Grad Sch Engn, Dept Mol & Macromol Chem, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan.. The CAS is 103-26-4. Through research, I have a further understanding and discovery of Methyl 3-phenyl-2-propenoate

A series of cinnamic monomers, which can be derived from naturally occurring phenylpropanoids, were radically copolymerized with vinyl monomers such as methyl acrylate (MA) and styrene (St). Although the monomer reactivity ratios were close to zero for all the cinnamic monomers, such as methyl cinnamate (CAMe), cinnamic acid (CA), N-isopropyl cinnamide (CNIPAm), cinnamaldehyde (CAld), and cinnamonitrile (CN), they were incorporated into the copolymers and significantly increased the glass transition temperatures despite the relatively low incorporation rates of up to 40 mol % due to their rigid 1,2-disubstituted structures. The regioselectivity of the radical copolymerization of CAMe was evaluated on the basis of the results of ruthenium-catalyzed atom transfer radical additions as model reactions. The obtained products suggest that the radicals of MA and St predominantly attack the vinyl carbon of the carbonyl side of CAMe and that the propagation of CAMe mainly occurs via the styrenic radical. The ruthenium-catalyzed living radical polymerization, nitroxide-mediated polymerization (NMP), and reversible addition-fragmentation chain transfer (RAFT) polymerization provided the copolymers with controlled molecular weights, narrow molecular weight distributions, and controlled comonomer compositions. The copolymers of N-isopropylacrylamide (NIPAM) and CNIPAm prepared via RAFT copolymerization showed thermoresponsivity with a lower critical solution temperature (LCST) that could be tuned by altering the comonomer incorporation and a higher LCST than the copolymers of NIPAM and St, which possessed similar molecular weights and similar NIPAM contents, due to the additional N-isopropylamide groups in the CNIPAm units compared to the St units.

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Terao, Y; Satoh, K; Kamigaito, M or concate me.. Name: Methyl 3-phenyl-2-propenoate

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Let`s talk about compound :103-26-4

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Nuri, A; Vucetic, N; Smatt, JH; Mansoori, Y; Mikkola, JP; Murzin, DY or concate me.. Recommanded Product: 103-26-4

Recently I am researching about METAL-ORGANIC FRAMEWORKS; MIZOROKI-HECK; HIGH-CAPACITY; MOFS; SEPARATION; STORAGE, Saw an article supported by the Abo Akademi University (ABO). Published in SPRINGER in NEW YORK ,Authors: Nuri, A; Vucetic, N; Smatt, JH; Mansoori, Y; Mikkola, JP; Murzin, DY. The CAS is 103-26-4. Through research, I have a further understanding and discovery of Methyl 3-phenyl-2-propenoate. Recommanded Product: 103-26-4

IRMOF-3 with a high surface area prepared by a hydrothermal method was used for deposition of Pd(OAc)(2) on IRMOF-3 particles. The final catalyst was characterized with FT-IR, nitrogen physisorption, thermogravimetry, scanning electron microscopy, transmission electron microscopy combined with energy dispersive X-ray analysis, wide angle X-ray diffraction spectroscopy and X-ray photoelectron spectroscopy. The prepared porous catalyst was effectively used in the Heck coupling reaction in the presence of an organic base. The reaction parameters such as the type of base, amounts of catalyst and solvents, temperature were optimized. The catalyst was then easily separated, washed, and reused 4 times without significant losses of catalytic activity. [GRAPHICS] .

About Methyl 3-phenyl-2-propenoate, If you have any questions, you can contact Nuri, A; Vucetic, N; Smatt, JH; Mansoori, Y; Mikkola, JP; Murzin, DY or concate me.. Recommanded Product: 103-26-4

Reference:
Article; Weng, Shiue-Shien; Ke, Chih-Shueh; Chen, Fong-Kuang; Lyu, You-Fu; Lin, Guan-Ying; Tetrahedron; vol. 67; 9; (2011); p. 1640 – 1648;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Chemical Research in 103-25-3

SDS of cas: 103-25-3. About Methyl 3-phenylpropionate, If you have any questions, you can contact An, JH; Wang, YH; Zhang, ZX; Zhang, J; Gocyla, M; Dunin-Borkowski, RE; Wang, F or concate me.

I found the field of Chemistry; Engineering very interesting. Saw the article Linear-regioselective hydromethoxycarbonylation of styrene using Ru-clusters/CeO2 catalyst published in 2020.0. SDS of cas: 103-25-3, Reprint Addresses Wang, F (corresponding author), Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian Natl Lab Clean Energy, Dalian 116023, Liaoning, Peoples R China.. The CAS is 103-25-3. Through research, I have a further understanding and discovery of Methyl 3-phenylpropionate

Hydroalkoxycarbonylation of olefins has been considered to be one of the most attractive methods to synthesize esters. Controlling the regioselectivities of linear esters (L) and branched esters (B) is a challenging project for researchers working in this reaction. Although most of the attention has been paid to control the regioselectivity through ligand design in homogeneous catalytic systems, study in the area is still limited. Herein, Ru-clusters/CeO2 is employed as a heterogeneous catalyst for the hydromethoxycarbonylation of styrene without any additives. After optimization of the reaction conditions, the conversion of styrene is > 99% with 83% and 12% regioselectivity of linear and branched ester, respectively. By using different supports (CeO2 (nanoparticle), CeO2-rod, and CeO2-cube), three catalysts including Ru-clusters/CeO2, Ru/CeO2-rod, and Ru/CeO2-cube are prepared and applied in the reaction. Structural characterizations demonstrate that the L/B ratio is related to the Ru size of supported Ru catalysts. Further Raman characterization and NH3-TPD demonstrate that the metal-support interaction and the concentration of oxygen vacancy of the catalyst have a great influence on the Ru size. The mechanism and kinetic analysis for this reaction are also investigated in this work. (C) 2020, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

SDS of cas: 103-25-3. About Methyl 3-phenylpropionate, If you have any questions, you can contact An, JH; Wang, YH; Zhang, ZX; Zhang, J; Gocyla, M; Dunin-Borkowski, RE; Wang, F or concate me.

Reference:
Patent; SANOFI; US2011/294788; (2011); A1;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Awesome Chemistry Experiments For 6H-Benzo[c]chromen-6-one

Application In Synthesis of 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Khosravi, K; Naserifar, S or concate me.

Application In Synthesis of 6H-Benzo[c]chromen-6-one. In 2019.0 CHEMISTRYSELECT published article about BAEYER-VILLIGER OXIDATION; SELECTIVE OXIDATION; AROMATIC-ALDEHYDES; CATALYTIC THIOCYANATION; EFFICIENT BROMINATION; SODIUM PERCARBONATE; BENZYLIC ALCOHOLS; HYDROGEN-PEROXIDE; AMIDATION; EPOXIDATION in [Khosravi, Kaveh; Naserifar, Shirin] Arak Univ, Dept Chem, Fac Sci, Arak 3815688349, Iran in 2019.0, Cited 61.0. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9.

Urea-2,2-dihydroperoxypropane (UDHPP)- a white crystalline solid oxidant which is formed when urea is recrystallized from dihydroperoxypropane- was applied as the terminal oxidant in several oxidative procedures namely epoxidation of alpha, beta-unsaturated ketones and alkenes, oxidation of sulfides to sulfoxides and sulfones, bayer-villeger reaction, bromination and iodation of aniline and phenol derivatives, oxidative esterification, oxidative amidation of aromatic aldehydes, thiocyanation of aromatic compounds, and oxidation of pyridines, oxidation of secondary, allylic and benzylic alcohols. All the approaches were carried out under mild conditions and short reaction times and afforded the corresponding products in high yields.

Application In Synthesis of 6H-Benzo[c]chromen-6-one. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Khosravi, K; Naserifar, S or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Why Are Children Getting Addicted To 103-25-3

About Methyl 3-phenylpropionate, If you have any questions, you can contact Wu, A; Qian, H; Zhao, WX; Sun, JW or concate me.. COA of Formula: C10H12O2

In 2020.0 CHEM SCI published article about REGIOSELECTIVE SYNTHESIS; 4+2 CYCLOADDITION; SUBSTITUTED NAPHTHALENES; CATALYZED BENZANNULATION; O-ALKYNYLBENZALDEHYDES; RING TRANSFORMATION; DERIVATIVES; YNAMIDES; VERSATILE; ANNULATION in [Wu, An; Qian, Hui; Zhao, Wanxiang; Sun, Jianwei] Hong Kong Univ Sci & Technol HKUST, Dept Chem, Kowloon, Clear Water Bay, Hong Kong, Peoples R China; [Wu, An; Qian, Hui; Zhao, Wanxiang; Sun, Jianwei] HKUST Shenzhen Res Inst, 9 Yuexing 1st Rd,Hitech Pk, Shenzhen 518057, Peoples R China in 2020.0, Cited 62.0. The Name is Methyl 3-phenylpropionate. Through research, I have a further understanding and discovery of 103-25-3. COA of Formula: C10H12O2

Described here is a modular strategy for the rapid synthesis of beta-functionalized electron-rich naphthalenes, a family of valuable molecules lacking general access previously. Our approach employs an intermolecular benzannulation ofin situgenerated isobenzopyrylium ions with various electron-rich alkynes, which were not well utilized for this type of reaction before. These reactions not only feature a broad scope, complete regioselectivity, and mild conditions, but also exhibit unusual product divergence depending on the substrate substitution pattern. This divergence allows further expansion of the product diversity. Control experiments provided preliminary insights into the reaction mechanism.

About Methyl 3-phenylpropionate, If you have any questions, you can contact Wu, A; Qian, H; Zhao, WX; Sun, JW or concate me.. COA of Formula: C10H12O2

Reference:
Patent; SANOFI; US2011/294788; (2011); A1;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics

Some scientific research about 2005-10-9

Category: esters-buliding-blocks. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Cheng, KY; Cai, ZQ; Fu, J; Sun, XB; Sun, WL; Chen, L; Zhang, DD; Liu, W or concate me.

An article Synergistic adsorption of Cu(II) and photocatalytic degradation of phenanthrene by a jaboticaba-like TiO2/titanate nanotube composite: An experimental and theoretical study WOS:000450105700109 published article about HEAVY-METAL IONS; DEPOSITED TITANATE NANOTUBES; ZERO-VALENT IRON; WASTE-WATER; TITANIUM-DIOXIDE; SIMULTANEOUS REMOVAL; AQUEOUS-SOLUTIONS; TIO2; OXIDATION; MONTMORILLONITE in [Cheng, Kaiyu] Zhejiang Univ, Ocean Coll, Zhoushan 316021, Peoples R China; [Cai, Zhengqing; Sun, Xianbo] East China Univ Sci & Technol, Natl Engn Lab High Concentrat Refractory Organ Wa, Shanghai 200237, Peoples R China; [Cai, Zhengqing; Fu, Jie] Fudan Univ, Dept Environm Sci & Engn, Shanghai 200433, Peoples R China; [Sun, Weiliang] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China; [Chen, Long; Zhang, Dandan; Liu, Wen] Peking Univ, Key Lab Water & Sediment Sci, Minist Educ, Coll Environm Sci & Engn, Beijing 100871, Peoples R China in 2019.0, Cited 66.0. Category: esters-buliding-blocks. The Name is 6H-Benzo[c]chromen-6-one. Through research, I have a further understanding and discovery of 2005-10-9

Combined water pollution with the coexistence of heavy metals and organic contaminants is of great concern for practical wastewater treatment. In this study, a jaboticaba-like nanocomposite, titanate nanotubes supported TiO2 (TiO2/TiNTs), was synthesized by a two-step hydrothermal treatment. TiO2 /TiNTs had large surface area, abundant of -ONa/H groups and fine crystal anatase phase, thus exhibited both good adsorptive performance for Cu(II) and high photocatalytic activity for phenanthrene degradation. The maximum Cu(II) adsorption capacity on TiO2/TiNTs was 115.0 mg/g at pH 5 according to Langmuir isotherm model, and > 95% of phenanthrene was degraded within 4 h under UV light. TiO2/TiNTs showed about 10 times higher observed rate constant (k(obs) ) for phenanthrene degradation compared to the unmodified TiNTs. More importantly, the coexistence of Cu(II) promoted photocatalytic degradation of phenanthrene, because the incorporated Cu(II) in the lattice of TiNTs could trap photo-excited electron and thus inhibited the electron-hole recombination. Density functional theory (DFT) calculation indicated that the sites of phenanthrene with high Fukui index (f(0)) preferred to be attacked by center dot OH radicals. The quantitative structure-activity relationship (QSAR) analysis revealed that the degradation intermediates had lower acute toxicity and mutagenicity than phenanthrene. TiO2/TiNTs also owned high stability, as only slight loss of Cu(II) and phenanthrene removal efficiency was observed even after four reuse cycles. The developed material in this study is of great application potential for water or wastewater treatment with multi-contaminants, and this work can help us to better understand the mechanisms on reaction between Ti-based nanomaterials and different kinds of contaminants.

Category: esters-buliding-blocks. About 6H-Benzo[c]chromen-6-one, If you have any questions, you can contact Cheng, KY; Cai, ZQ; Fu, J; Sun, XB; Sun, WL; Chen, L; Zhang, DD; Liu, W or concate me.

Reference:
Article; Zhang, Jian; Shi, Dongdong; Zhang, Haifeng; Xu, Zheng; Bao, Hanyang; Jin, Hongwei; Liu, Yunkui; Tetrahedron; vol. 73; 2; (2017); p. 154 – 163;,
Ester – Wikipedia,
Ester – an overview | ScienceDirect Topics